代码拉取完成,页面将自动刷新
同步操作将从 连享会/Python-causalml 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import pandas as pd
import torch
from causalml.inference.nn import CEVAE
from causalml.dataset import simulate_hidden_confounder
from causalml.metrics import get_cumgain
def test_CEVAE():
y, X, treatment, tau, b, e = simulate_hidden_confounder(n=10000, p=5, sigma=1.0, adj=0.)
outcome_dist = "normal"
latent_dim = 20
hidden_dim = 200
num_epochs = 50
batch_size = 100
learning_rate = 1e-3
learning_rate_decay = 0.1
cevae = CEVAE(outcome_dist=outcome_dist,
latent_dim=latent_dim,
hidden_dim=hidden_dim,
num_epochs=num_epochs,
batch_size=batch_size,
learning_rate=learning_rate,
learning_rate_decay=learning_rate_decay)
cevae.fit(X=torch.tensor(X, dtype=torch.float),
treatment=torch.tensor(treatment, dtype=torch.float),
y=torch.tensor(y, dtype=torch.float))
# check the accuracy of the ite accuracy
ite = cevae.predict(X).flatten()
auuc_metrics = pd.DataFrame({'ite': ite,
'W': treatment,
'y': y,
'treatment_effect_col': tau})
cumgain = get_cumgain(auuc_metrics,
outcome_col='y',
treatment_col='W',
treatment_effect_col='tau')
# Check if the cumulative gain when using the model's prediction is
# higher than it would be under random targeting
assert cumgain['ite'].sum() > cumgain['Random'].sum()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。