Ai
1 Star 0 Fork 1

Owen/Python-causalml

forked from 连享会/Python-causalml 
Create your Gitee Account
Explore and code with more than 13.5 million developers,Free private repositories !:)
Sign up
文件
Clone or Download
test_propensity.py 1.59 KB
Copy Edit Raw Blame History
from causalml.propensity import (
ElasticNetPropensityModel,
GradientBoostedPropensityModel,
LogisticRegressionPropensityModel
)
from causalml.metrics import roc_auc_score
from .const import RANDOM_SEED
def test_logistic_regression_propensity_model(generate_regression_data):
y, X, treatment, tau, b, e = generate_regression_data()
pm = LogisticRegressionPropensityModel(random_state=RANDOM_SEED)
ps = pm.fit_predict(X, treatment)
assert roc_auc_score(treatment, ps) > .5
def test_logistic_regression_propensity_model_model_kwargs(generate_regression_data):
y, X, treatment, tau, b, e = generate_regression_data()
pm = LogisticRegressionPropensityModel(random_state=123)
assert pm.model.random_state == 123
def test_elasticnet_propensity_model(generate_regression_data):
y, X, treatment, tau, b, e = generate_regression_data()
pm = ElasticNetPropensityModel(random_state=RANDOM_SEED)
ps = pm.fit_predict(X, treatment)
assert roc_auc_score(treatment, ps) > .5
def test_gradientboosted_propensity_model(generate_regression_data):
y, X, treatment, tau, b, e = generate_regression_data()
pm = GradientBoostedPropensityModel(random_state=RANDOM_SEED)
ps = pm.fit_predict(X, treatment)
assert roc_auc_score(treatment, ps) > .5
def test_gradientboosted_propensity_model_earlystopping(generate_regression_data):
y, X, treatment, tau, b, e = generate_regression_data()
pm = GradientBoostedPropensityModel(random_state=RANDOM_SEED, early_stop=True)
ps = pm.fit_predict(X, treatment)
assert roc_auc_score(treatment, ps) > .5
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/owen560/Python-causalml.git
git@gitee.com:owen560/Python-causalml.git
owen560
Python-causalml
Python-causalml
v0.12.0

Search