Fetch the repository succeeded.
This action will force synchronization from 连享会/Python-causalml, which will overwrite any changes that you have made since you forked the repository, and can not be recovered!!!
Synchronous operation will process in the background and will refresh the page when finishing processing. Please be patient.
from causalml.propensity import (
ElasticNetPropensityModel,
GradientBoostedPropensityModel,
LogisticRegressionPropensityModel
)
from causalml.metrics import roc_auc_score
from .const import RANDOM_SEED
def test_logistic_regression_propensity_model(generate_regression_data):
y, X, treatment, tau, b, e = generate_regression_data()
pm = LogisticRegressionPropensityModel(random_state=RANDOM_SEED)
ps = pm.fit_predict(X, treatment)
assert roc_auc_score(treatment, ps) > .5
def test_logistic_regression_propensity_model_model_kwargs(generate_regression_data):
y, X, treatment, tau, b, e = generate_regression_data()
pm = LogisticRegressionPropensityModel(random_state=123)
assert pm.model.random_state == 123
def test_elasticnet_propensity_model(generate_regression_data):
y, X, treatment, tau, b, e = generate_regression_data()
pm = ElasticNetPropensityModel(random_state=RANDOM_SEED)
ps = pm.fit_predict(X, treatment)
assert roc_auc_score(treatment, ps) > .5
def test_gradientboosted_propensity_model(generate_regression_data):
y, X, treatment, tau, b, e = generate_regression_data()
pm = GradientBoostedPropensityModel(random_state=RANDOM_SEED)
ps = pm.fit_predict(X, treatment)
assert roc_auc_score(treatment, ps) > .5
def test_gradientboosted_propensity_model_earlystopping(generate_regression_data):
y, X, treatment, tau, b, e = generate_regression_data()
pm = GradientBoostedPropensityModel(random_state=RANDOM_SEED, early_stop=True)
ps = pm.fit_predict(X, treatment)
assert roc_auc_score(treatment, ps) > .5
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。