Fetch the repository succeeded.
This action will force synchronization from 连享会/Python-causalml, which will overwrite any changes that you have made since you forked the repository, and can not be recovered!!!
Synchronous operation will process in the background and will refresh the page when finishing processing. Please be patient.
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from causalml.dataset import make_uplift_classification
from causalml.inference.meta import BaseTClassifier
from causalml.optimize.value_optimization import CounterfactualValueEstimator
from causalml.optimize.utils import get_treatment_costs
from causalml.optimize.utils import get_actual_value
from tests.const import RANDOM_SEED
def test_counterfactual_value_optimization():
df, X_names = make_uplift_classification(
n_samples=2000, treatment_name=['control', 'treatment1', 'treatment2'])
df_train, df_test = train_test_split(df, test_size=0.2, random_state=RANDOM_SEED)
train_idx = df_train.index
test_idx = df_test.index
conversion_cost_dict = {'control': 0, 'treatment1': 2.5, 'treatment2': 5}
impression_cost_dict = {'control': 0, 'treatment1': 0, 'treatment2': 0.02}
cc_array, ic_array, conditions = get_treatment_costs(treatment=df['treatment_group_key'],
control_name='control',
cc_dict=conversion_cost_dict,
ic_dict=impression_cost_dict)
conversion_value_array = np.full(df.shape[0], 20)
actual_value = get_actual_value(treatment=df['treatment_group_key'],
observed_outcome=df['conversion'],
conversion_value=conversion_value_array,
conditions=conditions,
conversion_cost=cc_array,
impression_cost=ic_array)
random_allocation_value = actual_value.loc[test_idx].mean()
tm = BaseTClassifier(learner=LogisticRegression(), control_name='control')
tm.fit(df_train[X_names].values, df_train['treatment_group_key'], df_train['conversion'])
tm_pred = tm.predict(df_test[X_names].values)
proba_model = LogisticRegression()
W_dummies = pd.get_dummies(df['treatment_group_key'])
XW = np.c_[df[X_names], W_dummies]
proba_model.fit(XW[train_idx], df_train['conversion'])
y_proba = proba_model.predict_proba(XW[test_idx])[:, 1]
cve = CounterfactualValueEstimator(treatment=df_test['treatment_group_key'],
control_name='control',
treatment_names=conditions[1:],
y_proba=y_proba,
cate=tm_pred,
value=conversion_value_array[test_idx],
conversion_cost=cc_array[test_idx],
impression_cost=ic_array[test_idx])
cve_best_idx = cve.predict_best()
cve_best = [conditions[idx] for idx in cve_best_idx]
actual_is_cve_best = df.loc[test_idx, 'treatment_group_key'] == cve_best
cve_value = actual_value.loc[test_idx][actual_is_cve_best].mean()
assert cve_value > random_allocation_value
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。