代码拉取完成,页面将自动刷新
import paddlex as pdx
from paddlex import transforms as T
# 下载和解压小度熊分拣数据集
dataset = 'https://bj.bcebos.com/paddlex/datasets/xiaoduxiong_ins_det.tar.gz'
pdx.utils.download_and_decompress(dataset, path='./')
# 定义训练和验证时的transforms
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/transforms/transforms.md
train_transforms = T.Compose([
T.RandomResizeByShort(
short_sizes=[640, 672, 704, 736, 768, 800],
max_size=1333,
interp='CUBIC'), T.RandomHorizontalFlip(), T.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
eval_transforms = T.Compose([
T.ResizeByShort(
short_size=800, max_size=1333, interp='CUBIC'), T.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 定义训练和验证所用的数据集
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/datasets.md
train_dataset = pdx.datasets.CocoDetection(
data_dir='xiaoduxiong_ins_det/JPEGImages',
ann_file='xiaoduxiong_ins_det/train.json',
transforms=train_transforms,
shuffle=True)
eval_dataset = pdx.datasets.CocoDetection(
data_dir='xiaoduxiong_ins_det/JPEGImages',
ann_file='xiaoduxiong_ins_det/val.json',
transforms=eval_transforms)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/visualdl.md
num_classes = len(train_dataset.labels)
model = pdx.det.MaskRCNN(
num_classes=num_classes, backbone='ResNet50', with_fpn=True)
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/instance_segmentation.md
# 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/parameters.md
model.train(
num_epochs=12,
train_dataset=train_dataset,
train_batch_size=1,
eval_dataset=eval_dataset,
pretrain_weights='COCO',
learning_rate=0.00125,
lr_decay_epochs=[8, 11],
warmup_steps=10,
warmup_start_lr=0.0,
save_dir='output/mask_rcnn_r50_fpn',
use_vdl=True)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。