Ai
45 Star 128 Fork 110

嵌入式软件部/Phytium-Linux-Kernel

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
spi-sun4i.c 13.46 KB
一键复制 编辑 原始数据 按行查看 历史
刘天宇 提交于 2023-07-03 15:47 +08:00 . Initial codes from Linux 5.10.153
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2012 - 2014 Allwinner Tech
* Pan Nan <pannan@allwinnertech.com>
*
* Copyright (C) 2014 Maxime Ripard
* Maxime Ripard <maxime.ripard@free-electrons.com>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#define SUN4I_FIFO_DEPTH 64
#define SUN4I_RXDATA_REG 0x00
#define SUN4I_TXDATA_REG 0x04
#define SUN4I_CTL_REG 0x08
#define SUN4I_CTL_ENABLE BIT(0)
#define SUN4I_CTL_MASTER BIT(1)
#define SUN4I_CTL_CPHA BIT(2)
#define SUN4I_CTL_CPOL BIT(3)
#define SUN4I_CTL_CS_ACTIVE_LOW BIT(4)
#define SUN4I_CTL_LMTF BIT(6)
#define SUN4I_CTL_TF_RST BIT(8)
#define SUN4I_CTL_RF_RST BIT(9)
#define SUN4I_CTL_XCH BIT(10)
#define SUN4I_CTL_CS_MASK 0x3000
#define SUN4I_CTL_CS(cs) (((cs) << 12) & SUN4I_CTL_CS_MASK)
#define SUN4I_CTL_DHB BIT(15)
#define SUN4I_CTL_CS_MANUAL BIT(16)
#define SUN4I_CTL_CS_LEVEL BIT(17)
#define SUN4I_CTL_TP BIT(18)
#define SUN4I_INT_CTL_REG 0x0c
#define SUN4I_INT_CTL_RF_F34 BIT(4)
#define SUN4I_INT_CTL_TF_E34 BIT(12)
#define SUN4I_INT_CTL_TC BIT(16)
#define SUN4I_INT_STA_REG 0x10
#define SUN4I_DMA_CTL_REG 0x14
#define SUN4I_WAIT_REG 0x18
#define SUN4I_CLK_CTL_REG 0x1c
#define SUN4I_CLK_CTL_CDR2_MASK 0xff
#define SUN4I_CLK_CTL_CDR2(div) ((div) & SUN4I_CLK_CTL_CDR2_MASK)
#define SUN4I_CLK_CTL_CDR1_MASK 0xf
#define SUN4I_CLK_CTL_CDR1(div) (((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
#define SUN4I_CLK_CTL_DRS BIT(12)
#define SUN4I_MAX_XFER_SIZE 0xffffff
#define SUN4I_BURST_CNT_REG 0x20
#define SUN4I_BURST_CNT(cnt) ((cnt) & SUN4I_MAX_XFER_SIZE)
#define SUN4I_XMIT_CNT_REG 0x24
#define SUN4I_XMIT_CNT(cnt) ((cnt) & SUN4I_MAX_XFER_SIZE)
#define SUN4I_FIFO_STA_REG 0x28
#define SUN4I_FIFO_STA_RF_CNT_MASK 0x7f
#define SUN4I_FIFO_STA_RF_CNT_BITS 0
#define SUN4I_FIFO_STA_TF_CNT_MASK 0x7f
#define SUN4I_FIFO_STA_TF_CNT_BITS 16
struct sun4i_spi {
struct spi_master *master;
void __iomem *base_addr;
struct clk *hclk;
struct clk *mclk;
struct completion done;
const u8 *tx_buf;
u8 *rx_buf;
int len;
};
static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg)
{
return readl(sspi->base_addr + reg);
}
static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
{
writel(value, sspi->base_addr + reg);
}
static inline u32 sun4i_spi_get_tx_fifo_count(struct sun4i_spi *sspi)
{
u32 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
reg >>= SUN4I_FIFO_STA_TF_CNT_BITS;
return reg & SUN4I_FIFO_STA_TF_CNT_MASK;
}
static inline void sun4i_spi_enable_interrupt(struct sun4i_spi *sspi, u32 mask)
{
u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
reg |= mask;
sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
}
static inline void sun4i_spi_disable_interrupt(struct sun4i_spi *sspi, u32 mask)
{
u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
reg &= ~mask;
sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
}
static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
{
u32 reg, cnt;
u8 byte;
/* See how much data is available */
reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
reg &= SUN4I_FIFO_STA_RF_CNT_MASK;
cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS;
if (len > cnt)
len = cnt;
while (len--) {
byte = readb(sspi->base_addr + SUN4I_RXDATA_REG);
if (sspi->rx_buf)
*sspi->rx_buf++ = byte;
}
}
static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
{
u32 cnt;
u8 byte;
/* See how much data we can fit */
cnt = SUN4I_FIFO_DEPTH - sun4i_spi_get_tx_fifo_count(sspi);
len = min3(len, (int)cnt, sspi->len);
while (len--) {
byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG);
sspi->len--;
}
}
static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
{
struct sun4i_spi *sspi = spi_master_get_devdata(spi->master);
u32 reg;
reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
reg &= ~SUN4I_CTL_CS_MASK;
reg |= SUN4I_CTL_CS(spi->chip_select);
/* We want to control the chip select manually */
reg |= SUN4I_CTL_CS_MANUAL;
if (enable)
reg |= SUN4I_CTL_CS_LEVEL;
else
reg &= ~SUN4I_CTL_CS_LEVEL;
/*
* Even though this looks irrelevant since we are supposed to
* be controlling the chip select manually, this bit also
* controls the levels of the chip select for inactive
* devices.
*
* If we don't set it, the chip select level will go low by
* default when the device is idle, which is not really
* expected in the common case where the chip select is active
* low.
*/
if (spi->mode & SPI_CS_HIGH)
reg &= ~SUN4I_CTL_CS_ACTIVE_LOW;
else
reg |= SUN4I_CTL_CS_ACTIVE_LOW;
sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
}
static size_t sun4i_spi_max_transfer_size(struct spi_device *spi)
{
return SUN4I_MAX_XFER_SIZE - 1;
}
static int sun4i_spi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *tfr)
{
struct sun4i_spi *sspi = spi_master_get_devdata(master);
unsigned int mclk_rate, div, timeout;
unsigned int start, end, tx_time;
unsigned int tx_len = 0;
int ret = 0;
u32 reg;
/* We don't support transfer larger than the FIFO */
if (tfr->len > SUN4I_MAX_XFER_SIZE)
return -EMSGSIZE;
if (tfr->tx_buf && tfr->len >= SUN4I_MAX_XFER_SIZE)
return -EMSGSIZE;
reinit_completion(&sspi->done);
sspi->tx_buf = tfr->tx_buf;
sspi->rx_buf = tfr->rx_buf;
sspi->len = tfr->len;
/* Clear pending interrupts */
sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0);
reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
/* Reset FIFOs */
sun4i_spi_write(sspi, SUN4I_CTL_REG,
reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST);
/*
* Setup the transfer control register: Chip Select,
* polarities, etc.
*/
if (spi->mode & SPI_CPOL)
reg |= SUN4I_CTL_CPOL;
else
reg &= ~SUN4I_CTL_CPOL;
if (spi->mode & SPI_CPHA)
reg |= SUN4I_CTL_CPHA;
else
reg &= ~SUN4I_CTL_CPHA;
if (spi->mode & SPI_LSB_FIRST)
reg |= SUN4I_CTL_LMTF;
else
reg &= ~SUN4I_CTL_LMTF;
/*
* If it's a TX only transfer, we don't want to fill the RX
* FIFO with bogus data
*/
if (sspi->rx_buf)
reg &= ~SUN4I_CTL_DHB;
else
reg |= SUN4I_CTL_DHB;
sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
/* Ensure that we have a parent clock fast enough */
mclk_rate = clk_get_rate(sspi->mclk);
if (mclk_rate < (2 * tfr->speed_hz)) {
clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
mclk_rate = clk_get_rate(sspi->mclk);
}
/*
* Setup clock divider.
*
* We have two choices there. Either we can use the clock
* divide rate 1, which is calculated thanks to this formula:
* SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
* Or we can use CDR2, which is calculated with the formula:
* SPI_CLK = MOD_CLK / (2 * (cdr + 1))
* Wether we use the former or the latter is set through the
* DRS bit.
*
* First try CDR2, and if we can't reach the expected
* frequency, fall back to CDR1.
*/
div = mclk_rate / (2 * tfr->speed_hz);
if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
if (div > 0)
div--;
reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
} else {
div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
reg = SUN4I_CLK_CTL_CDR1(div);
}
sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg);
/* Setup the transfer now... */
if (sspi->tx_buf)
tx_len = tfr->len;
/* Setup the counters */
sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len));
sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len));
/*
* Fill the TX FIFO
* Filling the FIFO fully causes timeout for some reason
* at least on spi2 on A10s
*/
sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH - 1);
/* Enable the interrupts */
sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TC |
SUN4I_INT_CTL_RF_F34);
/* Only enable Tx FIFO interrupt if we really need it */
if (tx_len > SUN4I_FIFO_DEPTH)
sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
/* Start the transfer */
reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH);
tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
start = jiffies;
timeout = wait_for_completion_timeout(&sspi->done,
msecs_to_jiffies(tx_time));
end = jiffies;
if (!timeout) {
dev_warn(&master->dev,
"%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
dev_name(&spi->dev), tfr->len, tfr->speed_hz,
jiffies_to_msecs(end - start), tx_time);
ret = -ETIMEDOUT;
goto out;
}
out:
sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
return ret;
}
static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
{
struct sun4i_spi *sspi = dev_id;
u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG);
/* Transfer complete */
if (status & SUN4I_INT_CTL_TC) {
sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
complete(&sspi->done);
return IRQ_HANDLED;
}
/* Receive FIFO 3/4 full */
if (status & SUN4I_INT_CTL_RF_F34) {
sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
/* Only clear the interrupt _after_ draining the FIFO */
sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_RF_F34);
return IRQ_HANDLED;
}
/* Transmit FIFO 3/4 empty */
if (status & SUN4I_INT_CTL_TF_E34) {
sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH);
if (!sspi->len)
/* nothing left to transmit */
sun4i_spi_disable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
/* Only clear the interrupt _after_ re-seeding the FIFO */
sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TF_E34);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static int sun4i_spi_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct sun4i_spi *sspi = spi_master_get_devdata(master);
int ret;
ret = clk_prepare_enable(sspi->hclk);
if (ret) {
dev_err(dev, "Couldn't enable AHB clock\n");
goto out;
}
ret = clk_prepare_enable(sspi->mclk);
if (ret) {
dev_err(dev, "Couldn't enable module clock\n");
goto err;
}
sun4i_spi_write(sspi, SUN4I_CTL_REG,
SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP);
return 0;
err:
clk_disable_unprepare(sspi->hclk);
out:
return ret;
}
static int sun4i_spi_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct sun4i_spi *sspi = spi_master_get_devdata(master);
clk_disable_unprepare(sspi->mclk);
clk_disable_unprepare(sspi->hclk);
return 0;
}
static int sun4i_spi_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct sun4i_spi *sspi;
int ret = 0, irq;
master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi));
if (!master) {
dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, master);
sspi = spi_master_get_devdata(master);
sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(sspi->base_addr)) {
ret = PTR_ERR(sspi->base_addr);
goto err_free_master;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = -ENXIO;
goto err_free_master;
}
ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler,
0, "sun4i-spi", sspi);
if (ret) {
dev_err(&pdev->dev, "Cannot request IRQ\n");
goto err_free_master;
}
sspi->master = master;
master->max_speed_hz = 100 * 1000 * 1000;
master->min_speed_hz = 3 * 1000;
master->set_cs = sun4i_spi_set_cs;
master->transfer_one = sun4i_spi_transfer_one;
master->num_chipselect = 4;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
master->bits_per_word_mask = SPI_BPW_MASK(8);
master->dev.of_node = pdev->dev.of_node;
master->auto_runtime_pm = true;
master->max_transfer_size = sun4i_spi_max_transfer_size;
sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
if (IS_ERR(sspi->hclk)) {
dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
ret = PTR_ERR(sspi->hclk);
goto err_free_master;
}
sspi->mclk = devm_clk_get(&pdev->dev, "mod");
if (IS_ERR(sspi->mclk)) {
dev_err(&pdev->dev, "Unable to acquire module clock\n");
ret = PTR_ERR(sspi->mclk);
goto err_free_master;
}
init_completion(&sspi->done);
/*
* This wake-up/shutdown pattern is to be able to have the
* device woken up, even if runtime_pm is disabled
*/
ret = sun4i_spi_runtime_resume(&pdev->dev);
if (ret) {
dev_err(&pdev->dev, "Couldn't resume the device\n");
goto err_free_master;
}
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_idle(&pdev->dev);
ret = devm_spi_register_master(&pdev->dev, master);
if (ret) {
dev_err(&pdev->dev, "cannot register SPI master\n");
goto err_pm_disable;
}
return 0;
err_pm_disable:
pm_runtime_disable(&pdev->dev);
sun4i_spi_runtime_suspend(&pdev->dev);
err_free_master:
spi_master_put(master);
return ret;
}
static int sun4i_spi_remove(struct platform_device *pdev)
{
pm_runtime_force_suspend(&pdev->dev);
return 0;
}
static const struct of_device_id sun4i_spi_match[] = {
{ .compatible = "allwinner,sun4i-a10-spi", },
{}
};
MODULE_DEVICE_TABLE(of, sun4i_spi_match);
static const struct dev_pm_ops sun4i_spi_pm_ops = {
.runtime_resume = sun4i_spi_runtime_resume,
.runtime_suspend = sun4i_spi_runtime_suspend,
};
static struct platform_driver sun4i_spi_driver = {
.probe = sun4i_spi_probe,
.remove = sun4i_spi_remove,
.driver = {
.name = "sun4i-spi",
.of_match_table = sun4i_spi_match,
.pm = &sun4i_spi_pm_ops,
},
};
module_platform_driver(sun4i_spi_driver);
MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
MODULE_LICENSE("GPL");
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/phytium_embedded/phytium-linux-kernel.git
git@gitee.com:phytium_embedded/phytium-linux-kernel.git
phytium_embedded
phytium-linux-kernel
Phytium-Linux-Kernel
linux-5.10

搜索帮助