MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to mix symbolic and imperative programming to maximize efficiency and productivity. At its core, MXNet contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly. A graph optimization layer on top of that makes symbolic execution fast and memory efficient. MXNet is portable and lightweight, scaling effectively to multiple GPUs and multiple machines.
借助OpenCV和CUDA实现GPU加速的计算机视觉 该书共计12章,涵盖以下内容: 1.了解如何从CUDA程序访问GPU设备属性和功能; 2.了解如何加快搜索和排序算法; 3.检测图像中的线条和圆形等形状; 4.使用算法探索对象跟踪和检测; 5.在Jetson TX1中使用不同的视频分析技术处理视频; 6.从PyCUDA程序访问GPU设备属性; 7.了解内核执行的工作原理。 每章均配有代码,并录制了10个视频教程。 作为该领域最新的相关开发教程,非常值得参考。