代码拉取完成,页面将自动刷新
# -*- coding: utf-8 -*-
# file: lstm.py
# author: songyouwei <youwei0314@gmail.com>
# Copyright (C) 2018. All Rights Reserved.
from layers.dynamic_rnn import DynamicLSTM
import torch
import torch.nn as nn
class LSTM(nn.Module):
def __init__(self, embedding_matrix, opt):
super(LSTM, self).__init__()
self.embed = nn.Embedding.from_pretrained(torch.tensor(embedding_matrix, dtype=torch.float))
self.lstm = DynamicLSTM(opt.embed_dim, opt.hidden_dim, num_layers=1, batch_first=True)
self.dense = nn.Linear(opt.hidden_dim, opt.polarities_dim)
def forward(self, inputs):
text_raw_indices = inputs[0]
x = self.embed(text_raw_indices)
x_len = torch.sum(text_raw_indices != 0, dim=-1)
_, (h_n, _) = self.lstm(x, x_len)
out = self.dense(h_n[0])
return out
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。