1 Star 9 Fork 7

Tanhaiyan/keyPointsDetectionMethodWithTorch

Create your Gitee Account
Explore and code with more than 13.5 million developers,Free private repositories !:)
Sign up
文件
This repository doesn't specify license. Please pay attention to the specific project description and its upstream code dependency when using it.
Clone or Download
keypoints_Net.py 5.56 KB
Copy Edit Raw Blame History
unknown authored 4 years ago . KPDM_v2.1
# -*- coding: utf-8 -*-
# @Time : 2020/9/7 16:54
# @Author : Haiyan Tan
# @File : keypoints_Net.py
from collections import OrderedDict
import torch
import torch.nn as nn
import dsntnn
def make_layers(block, no_relu_layers):
layers = []
for layer_name, v in block.items():
if 'pool' in layer_name:
layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2])
layers.append((layer_name, layer))
else:
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1],
kernel_size=v[2], stride=v[3],
padding=v[4])
layers.append((layer_name, conv2d))
if layer_name not in no_relu_layers:
layers.append(('relu_' + layer_name, nn.ReLU(inplace=True)))
return nn.Sequential(OrderedDict(layers))
class KeyPointsModel(nn.Module):
def __init__(self):
super(KeyPointsModel, self).__init__()
# these layers have no relu layer
no_relu_layers = ['conv6_2_CPM', 'Mconv7_stage2', 'Mconv7_stage3',
'Mconv7_stage4', 'Mconv7_stage5', 'Mconv7_stage6']
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0, return_indices=True)
self.maxunpool = nn.MaxUnpool2d(2, stride=2)
# stage 1
block1_0_0 = OrderedDict([
('conv1_1', [3, 64, 3, 1, 1]),
('conv1_2', [64, 64, 3, 1, 1]),
])
block1_0_1 = OrderedDict([
('conv2_1', [64, 128, 3, 1, 1]),
('conv2_2', [128, 128, 3, 1, 1]),
])
block1_0_2 = OrderedDict([
('conv3_1', [128, 256, 3, 1, 1]),
('conv3_2', [256, 256, 3, 1, 1]),
('conv3_3', [256, 256, 3, 1, 1]),
('conv3_4', [256, 256, 3, 1, 1]),
])
block1_0_3 = OrderedDict([
('conv4_1', [256, 512, 3, 1, 1]),
('conv4_2', [512, 512, 3, 1, 1]),
('conv4_3', [512, 512, 3, 1, 1]),
('conv4_4', [512, 512, 3, 1, 1]),
('conv5_1', [512, 512, 3, 1, 1]),
('conv5_2', [512, 512, 3, 1, 1]),
('conv5_3_CPM', [512, 128, 3, 1, 1])
])
block1_1 = OrderedDict([
('conv6_1_CPM', [128, 512, 1, 1, 0]),
('conv6_2_CPM', [512, 24, 1, 1, 0])
])
blocks = {}
blocks['block1_0_0'] = block1_0_0
blocks['block1_0_1'] = block1_0_1
blocks['block1_0_2'] = block1_0_2
blocks['block1_0_3'] = block1_0_3
blocks['block1_1'] = block1_1
# stage 2-6
for i in range(2, 7):
blocks['block%d' % i] = OrderedDict([
('Mconv1_stage%d' % i, [152, 128, 7, 1, 3]),
('Mconv2_stage%d' % i, [128, 128, 7, 1, 3]),
('Mconv3_stage%d' % i, [128, 128, 7, 1, 3]),
('Mconv4_stage%d' % i, [128, 128, 7, 1, 3]),
('Mconv5_stage%d' % i, [128, 128, 7, 1, 3]),
('Mconv6_stage%d' % i, [128, 128, 1, 1, 0]),
('Mconv7_stage%d' % i, [128, 24, 1, 1, 0])
])
for k in blocks.keys():
blocks[k] = make_layers(blocks[k], no_relu_layers)
self.model1_0_0 = blocks['block1_0_0']
self.model1_0_1 = blocks['block1_0_1']
self.model1_0_2 = blocks['block1_0_2']
self.model1_0_3 = blocks['block1_0_3']
self.model1_1 = blocks['block1_1']
self.model2 = blocks['block2']
self.model3 = blocks['block3']
self.model4 = blocks['block4']
self.model5 = blocks['block5']
self.model6 = blocks['block6']
def forward(self, x):
# block0
out1_0_0 = self.model1_0_0(x)
output, indices = self.maxpool(out1_0_0)
output_un_pool = self.maxunpool(output, indices)
out1_0_1 = self.model1_0_1(output_un_pool)
output, indices = self.maxpool(out1_0_1)
output_un_pool = self.maxunpool(output, indices)
out1_0_2 = self.model1_0_2(output_un_pool)
output, indices = self.maxpool(out1_0_2)
output_un_pool = self.maxunpool(output, indices)
out1_0 = self.model1_0_3(output_un_pool)
# block1
out1_1 = self.model1_1(out1_0)
concat_stage2 = torch.cat([out1_1, out1_0], 1)
out_stage2 = self.model2(concat_stage2)
concat_stage3 = torch.cat([out_stage2, out1_0], 1)
out_stage3 = self.model3(concat_stage3)
concat_stage4 = torch.cat([out_stage3, out1_0], 1)
out_stage4 = self.model4(concat_stage4)
concat_stage5 = torch.cat([out_stage4, out1_0], 1)
out_stage5 = self.model5(concat_stage5)
concat_stage6 = torch.cat([out_stage5, out1_0], 1)
out_stage6 = self.model6(concat_stage6)
return out_stage6
class CoordRegression(nn.Module):
def __init__(self, n_locations):
super().__init__()
self.fcn = KeyPointsModel()
self.hm_conv = nn.Conv2d(24, n_locations, kernel_size=1, bias=False)
def forward(self, images):
# run images trough FCN
fcn_out = self.fcn(images)
# use a 1x1 conv to get one un_normalized heat-map per location
unnormalized_heatmaps = self.hm_conv(fcn_out)
# normalize the heatmaps
heatmaps = dsntnn.flat_softmax(unnormalized_heatmaps)
# calculate the coordinates
coords = dsntnn.dsnt(heatmaps)
return coords, heatmaps
if __name__ == "__main__":
from torchsummary import summary
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# model = KeyPointsModel()
model = CoordRegression(24)
summary(model.cuda(), (3, 128, 128))
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/rpr/key-points-detection-method-with-torch.git
git@gitee.com:rpr/key-points-detection-method-with-torch.git
rpr
key-points-detection-method-with-torch
keyPointsDetectionMethodWithTorch
master

Search