1 Star 0 Fork 163

好好学习,天天向上/tqsdk-python

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
tafunc.py 51.69 KB
一键复制 编辑 原始数据 按行查看 历史
shinny-pack 提交于 2022-01-27 11:06 +08:00 . Update Version 3.2.2
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'limin'
from pandas import Series
"""
tqsdk.tafunc 模块包含了一批用于技术指标计算的函数
(函数基本保持 参数为pandas.Series类型则返回值为pandas.Series类型)
"""
import datetime
import math
from typing import Union
import numpy as np
import pandas as pd
from scipy import stats
from tqsdk.datetime import _get_period_timestamp, _str_to_timestamp_nano
def ref(series, n):
"""
简单移动: 求series序列位移n个周期的结果
注意: 当n为0, 函数返回原序列; 当n为有效值但当前的series序列元素个数不足 n + 1 个, 函数返回 NaN 序列
Args:
series (pandas.Series): 数据序列
n (int): 位移周期
Returns:
pandas.Series: 位移后的序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
pre_close = tafunc.ref(klines.close, 1) # 将收盘价序列右移一位, 得到昨收盘序列
change = klines.close - pre_close # 收盘价序列 - 昨收盘序列, 得到涨跌序列
print(list(change))
"""
m = series.shift(n)
return m
def std(series, n):
"""
标准差: 求series序列每n个周期的标准差
注意: n为0的情况下, 或当n为有效值但当前的series序列元素个数不足n个, 函数返回 NaN 序列
Args:
series (pandas.Series): 数据序列
n (int): 标准差的周期
Returns:
pandas.Series: 标准差序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
std = tafunc.std(klines.close, 5) # 收盘价序列每5项计算一个标准差
print(list(std))
"""
m = series.rolling(n).std()
return m
def ma(series, n):
"""
简单移动平均线: 求series序列n周期的简单移动平均
计算公式:
ma(x, 5) = (x(1) + x(2) + x(3) + x(4) + x(5)) / 5
注意:
1. 简单移动平均线将设定周期内的值取平均值, 其中各元素的权重都相等
2. n为0的情况下, 或当n为有效值但当前的series序列元素个数不足n个, 函数返回 NaN 序列
Args:
series (pandas.Series): 数据序列
n (int): 周期
Returns:
pandas.Series: 简单移动平均值序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
ma = tafunc.ma(klines.close, 5)
print(list(ma))
"""
ma_data = series.rolling(n).mean()
return ma_data
def sma(series, n, m):
"""
扩展指数加权移动平均: 求series序列n周期的扩展指数加权移动平均
计算公式:
sma(x, n, m) = sma(x, n, m).shift(1) * (n - m) / n + x(n) * m / n
注意: n必须大于m
Args:
series (pandas.Series): 数据序列
n (int): 周期
m (int): 权重
Returns:
pandas.Series: 扩展指数加权移动平均序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
sma = tafunc.sma(klines.close, 5, 2) # 收盘价序列每5项计算一个扩展指数加权移动平均值
print(list(sma))
"""
sma_data = series.ewm(alpha=m / n, adjust=False).mean()
return sma_data
def ema(series, n):
"""
指数加权移动平均线: 求series序列n周期的指数加权移动平均
计算公式:
ema(x, n) = 2 * x / (n + 1) + (n - 1) * ema(x, n).shift(1) / (n + 1)
注意:
1. n 需大于等于1
2. 对距离当前较近的k线赋予了较大的权重
Args:
series (pandas.Series): 数据序列
n (int): 周期
Returns:
pandas.Series: 指数加权移动平均线序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
ema = tafunc.ema(klines.close, 5)
print(list(ema))
"""
ema_data = series.ewm(span=n, adjust=False).mean()
return ema_data
def ema2(series, n):
"""
线性加权移动平均: 求series值的n周期线性加权移动平均 (也称WMA)
计算公式:
ema2(x, n) = [n * x(0) + (n - 1) * x(1) + (x - 2) * x(2) + ... + 1 * x(n - 1)] / [n + (n - 1) + (n - 2) + ... + 1]
注意: 当n为有效值但当前的series序列元素个数不足n个, 函数返回 NaN 序列
Args:
series (pandas.Series): 数据序列
n (int): 周期
Returns:
pandas.Series: 线性加权移动平均线序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
ema2 = tafunc.ema2(klines.close, 5) # 求收盘价在5个周期的线性加权移动平均值
print(list(ema2))
"""
weights = list(i for i in range(1, n + 1)) # 对应的权值列表
def average(elements):
return np.average(elements, weights=weights)
ema2 = series.rolling(window=n).apply(average, raw=True)
return ema2
def crossup(a, b):
"""
向上穿越: 表当a从下方向上穿过b, 成立返回1, 否则返回0
Args:
a (pandas.Series): 数据序列1
b (pandas.Series): 数据序列2
Returns:
pandas.Series: 上穿标志序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
crossup = tafunc.crossup(tafunc.ma(klines.close, 5), tafunc.ma(klines.close, 10))
print(list(crossup))
"""
crossup_data = pd.Series(np.where((a > b) & (a.shift(1) <= b.shift(1)), 1, 0))
return crossup_data
def crossdown(a, b):
"""
向下穿越: 表示当a从上方向下穿b,成立返回1, 否则返回0
Args:
a (pandas.Series): 数据序列1
b (pandas.Series): 数据序列2
Returns:
pandas.Series: 下穿标志序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
crossdown = tafunc.crossdown(tafunc.ma(klines.close, 5), tafunc.ma(klines.close, 10))
print(list(crossdown))
"""
crossdown_data = pd.Series(np.where((a < b) & (a.shift(1) >= b.shift(1)), 1, 0))
return crossdown_data
def count(cond, n):
"""
统计n周期中满足cond条件的个数
注意: 如果n为0, 则从第一个有效值开始统计
Args:
cond (array_like): 条件
n (int): 周期
Returns:
pandas.Series: 统计值序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
# 统计从申请到的行情数据以来到当前这段时间内, 5周期均线上穿10周期均线的次数:
count = tafunc.count(tafunc.crossup(tafunc.ma(klines.close, 5), tafunc.ma(klines.close, 10)), 0)
print(list(count))
"""
if n == 0: # 从第一个有效值开始统计
count_data = pd.Series(np.where(cond, 1, 0).cumsum())
else: # 统计每个n周期
count_data = pd.Series(pd.Series(np.where(cond, 1, 0)).rolling(n).sum())
return count_data
def trma(series, n):
"""
三角移动平均: 求series的n周期三角移动平均值
计算方法:
三角移动平均线公式, 是采用算数移动平均, 并且对第一个移动平均线再一次应用算数移动平均
注意: n为0的情况下, 或当n为有效值但当前的series序列元素个数不足n个, 函数返回 NaN 序列
Args:
series (pandas.Series): 数据序列
n (int): 周期
Returns:
pandas.Series: 三角移动平均值序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
trma = tafunc.trma(klines.close, 10)
print(list(trma))
"""
if n % 2 == 0:
n1 = int(n / 2)
n2 = int(n / 2 + 1)
else:
n1 = n2 = int((n + 1) / 2)
ma_half = ma(series, n1)
trma_data = ma(ma_half, n2)
return trma_data
def harmean(series, n):
"""
调和平均值: 求series在n个周期内的调和平均值
计算方法:
harmean(x, 5) = 1 / [(1 / x(1) + 1 / x(2) + 1 / x(3) + 1 / x(4) + 1 / x(5)) / 5]
注意:
1. 调和平均值与倒数的简单平均值互为倒数
2. 当n为0, 或当n为有效值但当前的series序列元素个数不足n个, 函数返回 NaN 序列
Args:
series (pandas.Series): 数据序列
n (int): 周期
Returns:
pandas.Series: 调和平均值序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
harmean = tafunc.harmean(klines.close, 5) # 求5周期收盘价的调和平均值
print(list(harmean))
"""
harmean_data = n / ((1 / series).rolling(n).sum())
return harmean_data
def numpow(series, n, m):
"""
自然数幂方和
计算方法:
numpow(x, n, m) = n ^ m * x + (n - 1) ^ m * x.shift(1) + (n - 2) ^ m * x.shift(2) + ... + 2 ^ m * x.shift(n - 2) + 1 ^ m * x.shift(n - 1)
注意: 当n为有效值但当前的series序列元素个数不足n个, 函数返回 NaN 序列
Args:
series (pandas.Series): 数据序列
n (int): 自然数
m (int): 实数
Returns:
pandas.Series: 幂方和序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
numpow = tafunc.numpow(klines.close, 5, 2)
print(list(numpow))
"""
numpow_data = sum((n - i) ** m * series.shift(i) for i in range(n))
return numpow_data
def abs(series):
"""
获取series的绝对值
注意: 正数的绝对值是它本身, 负数的绝对值是它的相反数, 0的绝对值还是0
Args:
series (pandas.Series): 数据序列
Returns:
pandas.Series: 绝对值序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
abs = tafunc.abs(klines.close)
print(list(abs))
"""
abs_data = pd.Series(np.absolute(series))
return abs_data
def min(series1, series2):
"""
获取series1和series2中的最小值
Args:
series1 (pandas.Series): 数据序列1
series2 (pandas.Series): 数据序列2
Returns:
pandas.Series: 最小值序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
min = tafunc.min(klines.close, klines.open)
print(list(min))
"""
min_data = np.minimum(series1, series2)
return min_data
def max(series1, series2):
"""
获取series1和series2中的最大值
Args:
series1 (pandas.Series): 数据序列1
series2 (pandas.Series): 数据序列2
Returns:
pandas.Series: 最大值序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
max = tafunc.max(klines.close, klines.open)
print(list(max))
"""
max_data = np.maximum(series1, series2)
return max_data
def median(series, n):
"""
中位数: 求series在n个周期内居于中间的数值
注意:
1. 当n为有效值但当前的series序列元素个数不足n个, 函数返回 NaN 序列
2. 对n个周期内所有series排序后, 若n为奇数, 则选择第(n + 1) / 2个为中位数, 若n为偶数, 则中位数是(n / 2)以及(n / 2 + 1)的平均数
Args:
series (pandas.Series): 数据序列
n (int): 周期
Returns:
pandas.Series: 中位数序列
Example::
例1:
# 假设最近3日的收盘价为2727, 2754, 2748, 那么当前 median(df["close"], 3) 的返回值是2748
median3 = tafunc.median(df["close"], 3)
例2:
# 假设最近4日的开盘价为2752, 2743, 2730, 2728, 那么当前 median(df["open"], 4) 的返回值是2736.5
median4 = tafunc.median(df["open"], 4)
"""
median_data = series.rolling(n).median()
return median_data
def exist(cond, n):
"""
判断n个周期内, 是否有满足cond的条件, 若满足则值为1, 不满足为0
Args:
cond (array_like): 条件
n (int): 周期
Returns:
pandas.Series: 判断结果序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
# 判断4个周期中是否存在收盘价大于前一个周期的最高价, 存在返回1, 不存在则返回0
exist = tafunc.exist(klines.close > klines.high.shift(1), 4)
print(list(exist))
"""
exist_data = pd.Series(np.where(pd.Series(np.where(cond, 1, 0)).rolling(n).sum() > 0, 1, 0))
return exist_data
def every(cond, n):
"""
判断n个周期内, 是否一直满足cond条件, 若满足则值为1, 不满足为0
Args:
cond (array_like): 条件
n (int): 周期
Returns:
pandas.Series: 判断结果序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
# 判断在4周期内, 3周期的简单移动平均是否一直大于5周期的简单移动平均
every = tafunc.every(tafunc.ma(klines.close, 3) > tafunc.ma(klines.close, 5), 4)
print(list(every))
"""
every_data = pd.Series(np.where(pd.Series(np.where(cond, 1, 0)).rolling(n).sum() == n, 1, 0))
return every_data
def hhv(series, n):
"""
求series在n个周期内的最高值
注意: n为0的情况下, 或当n为有效值但当前的series序列元素个数不足n个, 函数返回 NaN 序列
Args:
series (pandas.Series): 数据序列
n (int): 周期
Returns:
pandas.Series: 最高值序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
hhv = tafunc.hhv(klines.high, 4) # 求4个周期最高价的最大值, 即4周期高点(包含当前k线)
print(list(hhv))
"""
hhv_data = series.rolling(n).max()
return hhv_data
def llv(series, n):
"""
求在n个周期内的最小值
注意: n为0的情况下, 或当n为有效值但当前的series序列元素个数不足n个, 函数返回 NaN 序列
Args:
series (pandas.Series): 数据序列
n (int): 周期
Returns:
pandas.Series: 最小值序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
llv = tafunc.llv(klines.low, 5) # 求5根k线最低点(包含当前k线)
print(list(llv))
"""
llv_data = series.rolling(n).min()
return llv_data
def avedev(series, n):
"""
平均绝对偏差: 求series在n周期内的平均绝对偏差
算法:
计算avedev(df["close"],3)在最近一根K线上的值:
(abs(df["close"] - (df["close"] + df["close"].shift(1) + df["close"].shift(2)) / 3) + abs(
df["close"].shift(1) - (df["close"] + df["close"].shift(1) + df["close"].shift(2)) / 3) + abs(
df["close"].shift(2) - (df["close"] + df["close"].shift(1) + df["close"].shift(2)) / 3)) / 3
注意: n为0的情况下, 或当n为有效值但当前的series序列元素个数不足n个, 函数返回 NaN 序列
Args:
series (pandas.Series): 数据序列
n (int): 周期
Returns:
pandas.Series: 平均绝对偏差序列
Example::
from tqsdk import TqApi, TqAuth, TqSim, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
# 计算收盘价在5周期内的平均绝对偏差, 表示5个周期内每个周期的收盘价与5周期收盘价的平均值的差的绝对值的平均值, 判断收盘价与其均值的偏离程度:
avedev = tafunc.avedev(klines.close, 5)
print(list(avedev))
"""
def mad(x):
return np.fabs(x - x.mean()).mean()
avedev_data = series.rolling(window=n).apply(mad, raw=True)
return avedev_data
def _to_ns_timestamp(input_time):
"""
辅助函数: 将传入的时间转换为int类型的纳秒级时间戳
Args:
input_time (str/ int/ float/ datetime.datetime): 需要转换的时间:
* str: str 类型的时间,如Quote行情时间的datetime字段 (eg. 2019-10-14 14:26:01.000000)
* int: int 类型纳秒级或秒级时间戳
* float: float 类型纳秒级或秒级时间戳,如K线或tick的datetime字段 (eg. 1.57103449e+18)
* datetime.datetime: datetime 模块中 datetime 类型
Returns:
int : int 类型纳秒级时间戳
"""
if type(input_time) in {int, float, np.float64, np.float32, np.int64, np.int32}: # 时间戳
if input_time > 2 ** 32: # 纳秒( 将 > 2*32数值归为纳秒级)
return int(input_time)
else: # 秒
return int(input_time * 1e9)
elif isinstance(input_time, str): # str 类型时间
return _str_to_timestamp_nano(input_time)
elif isinstance(input_time, datetime.datetime): # datetime 类型时间
return int(input_time.timestamp() * 1e9)
else:
raise TypeError("暂不支持此类型的转换")
def time_to_ns_timestamp(input_time):
"""
将传入的时间转换为int类型的纳秒级时间戳
Args:
input_time (str/ int/ float/ datetime.datetime): 需要转换的时间:
* str: str 类型的时间,如Quote行情时间的datetime字段 (eg. 2019-10-14 14:26:01.000000)
* int: int 类型的纳秒级或秒级时间戳
* float: float 类型的纳秒级或秒级时间戳,如K线或tick的datetime字段 (eg. 1.57103449e+18)
* datetime.datetime: datetime 模块中的 datetime 类型时间
Returns:
int : int 类型的纳秒级时间戳
Example::
from tqsdk.tafunc import time_to_ns_timestamp
print(time_to_ns_timestamp("2019-10-14 14:26:01.000000")) # 将%Y-%m-%d %H:%M:%S.%f 格式的str类型转为纳秒时间戳
print(time_to_ns_timestamp(1571103122)) # 将秒级转为纳秒时间戳
print(time_to_ns_timestamp(datetime.datetime(2019, 10, 14, 14, 26, 1))) # 将datetime.datetime时间转为纳秒时间戳
"""
return _to_ns_timestamp(input_time)
def time_to_s_timestamp(input_time):
"""
将传入的时间转换为int类型的秒级时间戳
Args:
input_time (str/ int/ float/ datetime.datetime): 需要转换的时间:
* str: str 类型的时间,如Quote行情时间的datetime字段 (eg. 2019-10-14 14:26:01.000000)
* int: int 类型的纳秒级或秒级时间戳
* float: float 类型的纳秒级或秒级时间戳,如K线或tick的datetime字段 (eg. 1.57103449e+18)
* datetime.datetime: datetime 模块中的 datetime 类型时间
Returns:
int : int类型的秒级时间戳
Example::
from tqsdk.tafunc import time_to_s_timestamp
print(time_to_s_timestamp(1.57103449e+18)) # 将纳秒级时间戳转为秒级时间戳
print(time_to_s_timestamp("2019-10-14 14:26:01.000000")) # 将%Y-%m-%d %H:%M:%S.%f 格式的str类型时间转为秒级时间戳
print(time_to_s_timestamp(datetime.datetime(2019, 10, 14, 14, 26, 1))) # 将datetime.datetime时间转为秒时间戳
"""
return int(_to_ns_timestamp(input_time) / 1e9)
def time_to_str(input_time):
"""
将传入的时间转换为 %Y-%m-%d %H:%M:%S.%f 格式的 str 类型
Args:
input_time (int/ float/ datetime.datetime): 需要转换的时间:
* int: int 类型的纳秒级或秒级时间戳
* float: float 类型的纳秒级或秒级时间戳,如K线或tick的datetime字段 (eg. 1.57103449e+18)
* datetime.datetime: datetime 模块中的 datetime 类型时间
Returns:
str : %Y-%m-%d %H:%M:%S.%f 格式的 str 类型时间
Example::
from tqsdk.tafunc import time_to_str
print(time_to_str(1.57103449e+18)) # 将纳秒级时间戳转为%Y-%m-%d %H:%M:%S.%f 格式的str类型时间
print(time_to_str(1571103122)) # 将秒级时间戳转为%Y-%m-%d %H:%M:%S.%f 格式的str类型时间
print(time_to_str(datetime.datetime(2019, 10, 14, 14, 26, 1))) # 将datetime.datetime时间转为%Y-%m-%d %H:%M:%S.%f 格式的str类型时间
"""
# 转为秒级时间戳
ts = _to_ns_timestamp(input_time) / 1e9
# 转为 %Y-%m-%d %H:%M:%S.%f 格式的 str 类型时间
dt = datetime.datetime.fromtimestamp(ts)
dt = dt.strftime('%Y-%m-%d %H:%M:%S.%f')
return dt
def time_to_datetime(input_time):
"""
将传入的时间转换为 datetime.datetime 类型
Args:
input_time (int/ float/ str): 需要转换的时间:
* int: int 类型的纳秒级或秒级时间戳
* float: float 类型的纳秒级或秒级时间戳,如K线或tick的datetime字段 (eg. 1.57103449e+18)
* str: str 类型的时间,如Quote行情时间的 datetime 字段 (eg. 2019-10-14 14:26:01.000000)
Returns:
datetime.datetime : datetime 模块中的 datetime 类型时间
Example::
from tqsdk.tafunc import time_to_datetime
print(time_to_datetime(1.57103449e+18)) # 将纳秒级时间戳转为datetime.datetime时间
print(time_to_datetime(1571103122)) # 将秒级时间戳转为datetime.datetime时间
print(time_to_datetime("2019-10-14 14:26:01.000000")) # 将%Y-%m-%d %H:%M:%S.%f 格式的str类型时间转为datetime.datetime时间
"""
# 转为秒级时间戳
ts = _to_ns_timestamp(input_time) / 1e9
# 转为datetime.datetime类型
dt = datetime.datetime.fromtimestamp(ts)
return dt
def barlast(cond):
"""
返回一个序列,其中每个值表示从上一次条件成立到当前的周期数
(注: 如果从cond序列第一个值到某个位置之间没有True,则此位置的返回值为 -1; 条件成立的位置上的返回值为0)
Args:
cond (pandas.Series): 条件序列(序列中的值需为 True 或 False)
Returns:
pandas.Series : 周期数序列(其长度和 cond 相同;最后一个值即为最后一次条件成立到最新一个数据的周期数)
Example::
from tqsdk import TqApi, TqAuth
from tqsdk.tafunc import barlast
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("SHFE.cu1912", 60)
# print(list(klines.close))
# print(list(klines.open))
# print(list(klines.close > klines.open))
n = barlast(klines.close > klines.open) # 获取周期数序列
print(list(n))
print(n.iloc[-1]) # 获取最后一根k线到上一次满足 "收盘价大于开盘价" 条件的k线的周期数
api.close()
"""
cond = cond.to_numpy()
v = np.array(~cond, dtype=np.int)
c = np.cumsum(v)
x = c[cond]
d = np.diff(np.concatenate(([0], x)))
if len(d) == 0: # 如果cond长度为0或无True
return pd.Series([-1] * len(cond))
v[cond] = -d
r = np.cumsum(v)
r[:x[0]] = -1
return pd.Series(r)
def _get_t_series(series: pd.Series, dur: int, expire_datetime: int):
t = pd.Series(pd.to_timedelta(expire_datetime - (series / 1e9 + dur), unit='s'))
return (t.dt.days * 86400 + t.dt.seconds) / (360 * 86400)
def _get_d1(series: pd.Series, k: float, r: float, v: Union[float, pd.Series], t: Union[float, pd.Series]):
return pd.Series(
np.where((v <= 0) | (t <= 0), np.nan, (np.log(series / k) + (r + 0.5 * np.power(v, 2)) * t) / (v * np.sqrt(t))))
def _get_cdf(series: pd.Series):
s = series.loc[series.notna()]
return pd.concat([series.loc[series.isna()], pd.Series(stats.norm.cdf(s), index=s.index)], verify_integrity=True)
def _get_pdf(series: pd.Series):
s = series.loc[series.notna()]
return pd.concat([series.loc[series.isna()], pd.Series(stats.norm.pdf(s), index=s.index)], verify_integrity=True)
def _get_options_class(series: pd.Series, option_class: Union[str, pd.Series]):
"""
根据价格序列 series,和指定的 option_class
Args:
option_class (str / Series[str]): CALL / PUT / Series(['CALL', 'CALL', 'CALL', 'PUT'])
Returns:
Series[int] : 长度和 series 一致,Series([1, 1, 1, 1]) / Series([-1, -1, -1, -1]) / Series([1, 1, 1, -1]), 对于无效的参数值为 Series([nan, nan, nan, nan])
"""
if type(option_class) is str and option_class in ["CALL", "PUT"]:
return Series([(1 if option_class == "CALL" else -1) for _ in range(series.size)])
elif type(option_class) is Series and series.size == option_class.size:
return option_class.map({'CALL': 1, 'PUT': -1})
else:
return Series([float('nan') for _ in range(series.size)])
def get_t(df, expire_datetime):
"""
计算 K 线序列对应的年化到期时间,主要用于计算期权相关希腊指标时,需要得到计算出序列对应的年化到期时间
Args:
df (pandas.DataFrame): Dataframe 格式的 K 线序列
expire_datetime (int): 到期日, 秒级时间戳
Returns:
pandas.Series : 返回的 df 对应的年化时间序列
Example::
from tqsdk import TqApi, TqAuth, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote('SHFE.cu2006C45000')
klines = api.get_kline_serial(['SHFE.cu2006C45000', 'SHFE.cu2006'], 24 * 60 * 60, 50)
t = tafunc.get_t(klines, quote.expire_datetime)
print(t)
api.close()
"""
return pd.Series(_get_t_series(df["datetime"], df["duration"], expire_datetime))
def get_his_volatility(df, quote):
"""
计算某个合约的历史波动率
Args:
df (pandas.DataFrame): Dataframe 格式的 K 线序列
quote (tqsdk.objs.Quote): df 序列对应合约对象
Returns:
float : 返回的 df 对应的历史波动率
Example::
from tqsdk import TqApi, TqAuth, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote('SHFE.cu2006')
klines = api.get_kline_serial('SHFE.cu2006', 24 * 60 * 60, 50)
v = tafunc.get_his_volatility(klines, quote)
print(v)
api.close()
"""
if quote and quote.instrument_id == df["symbol"][0]:
trading_time = quote.trading_time
else:
trading_time = None
return _get_volatility(df["close"], df["duration"], trading_time)
def _get_volatility(series: pd.Series, dur: Union[pd.Series, int] = 86400, trading_time: list = None) -> float:
series_u = np.log(series.shift(1)[1:] / series[1:])
series_u = series_u[~np.isnan(series_u)]
if series_u.size < 2: # 自由度小于2无法计算,返回一个默认值
return float("nan")
seconds_per_day = 24 * 60 * 60
dur = dur[0] if isinstance(dur, pd.Series) else dur
if dur < 24 * 60 * 60 and trading_time:
periods = _get_period_timestamp(0, trading_time.get("day", []) + trading_time.get("night", []))
seconds_per_day = sum([p[1] - p[0] for p in periods]) / 1e9
return math.sqrt((250 * seconds_per_day / dur) * np.cov(series_u))
def get_bs_price(series, k, r, v, t, option_class):
"""
计算期权 BS 模型理论价格
Args:
series (pandas.Series): 标的价格序列
k (float): 期权行权价
r (float): 无风险利率
v (float / pandas.Series): 波动率
* float: 对于 series 中每个元素都使用相同的 v 计算理论价
* pandas.Series: 其元素个数应该和 series 元素个数相同,对于 series 中每个元素都使用 v 中对应的值计算理论价
t (float / pandas.Series): 年化到期时间,例如:还有 100 天到期,则年化到期时间为 100/360
* float: 对于 series 中每个元素都使用相同的 t 计算理论价
* pandas.Series: 其元素个数应该和 series 元素个数相同,对于 series 中每个元素都使用 t 中对应的值计算理论价
option_class (str / pandas.Series): 期权方向,必须是两者其一,否则返回的序列值全部为 nan
* str: "CALL" 或者 "PUT"
* pandas.Series: 其元素个数应该和 series 元素个数相同,每个元素的值为 "CALL" 或者 "PUT"
Returns:
pandas.Series: 返回该序列理论价
Example::
import pandas as pd
from tqsdk import TqApi, TqAuth, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote("SHFE.cu2006")
ks = api.get_kline_serial("SHFE.cu2006", 24 * 60 * 60, 10)
v = tafunc.get_his_volatility(ks, quote) # 历史波动率
option = api.get_quote("SHFE.cu2006C45000")
klines = api.get_kline_serial(["SHFE.cu2006C45000", "SHFE.cu2006"], 24 * 60 * 60, 10)
t = tafunc.get_t(klines, option.expire_datetime)
bs_price = tafunc.get_bs_price(klines["close1"], 45000, 0.025, v, t, option.option_class) # 理论价
print(list(bs_price.round(2)))
api.close()
"""
o = _get_options_class(series, option_class=option_class)
d1 = _get_d1(series, k, r, v, t)
d2 = pd.Series(np.where(np.isnan(d1), np.nan, d1 - v * np.sqrt(t)))
return pd.Series(
np.where(np.isnan(d1), np.nan, o * (series * _get_cdf(o * d1) - k * np.exp(-r * t) * _get_cdf(o * d2))))
def get_delta(series, k, r, v, t, option_class, d1=None):
"""
计算期权希腊指标 delta 值
Args:
series (pandas.Series): 标的价格序列
k (float): 期权行权价
r (float): 无风险利率
v (float / pandas.Series): 波动率
* float: 对于 series 中每个元素都使用相同的 v 计算理论价
* pandas.Series: 其元素个数应该和 series 元素个数相同,对于 series 中每个元素都使用 v 中对应的值计算理论价
t (float / pandas.Series): 年化到期时间,例如:还有 100 天到期,则年化到期时间为 100/360
* float: 对于 series 中每个元素都使用相同的 t 计算理论价
* pandas.Series: 其元素个数应该和 series 元素个数相同,对于 series 中每个元素都使用 t 中对应的值计算理论价
option_class (str / pandas.Series): 期权方向,必须是两者其一,否则返回的序列值全部为 nan
* str: "CALL" 或者 "PUT"
* pandas.Series: 其元素个数应该和 series 元素个数相同,每个元素的值为 "CALL" 或者 "PUT"
d1 (None | pandas.Series): [可选] 序列对应的 BS 公式中 b1 值
Returns:
pandas.Series: 该序列的 delta 值
Example::
import pandas as pd
from tqsdk import TqApi, TqAuth, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote("SHFE.cu2006")
ks = api.get_kline_serial("SHFE.cu2006", 24 * 60 * 60, 10)
v = tafunc.get_his_volatility(ks, quote) # 历史波动率
option = api.get_quote("SHFE.cu2006C45000")
klines = api.get_kline_serial(["SHFE.cu2006C45000", "SHFE.cu2006"], 24 * 60 * 60, 10)
t = tafunc.get_t(klines, option.expire_datetime)
impv = tafunc.get_impv(klines["close1"], klines["close"], 45000, 0.025, v, t, "CALL")
delta = tafunc.get_delta(klines["close1"], 45000, 0.025, v, t, "CALL")
print("delta", list(delta))
api.close()
"""
o = _get_options_class(series, option_class=option_class)
if d1 is None:
d1 = _get_d1(series, k, r, v, t)
return pd.Series(np.where(np.isnan(d1), np.nan, pd.Series(o * _get_cdf(o * d1))))
def get_gamma(series, k, r, v, t, d1=None):
"""
计算期权希腊指标 gamma 值
Args:
series (pandas.Series): 标的价格序列
k (float): 期权行权价
r (float): 无风险利率
v (float / pandas.Series): 波动率
* float: 对于 series 中每个元素都使用相同的 v 计算理论价
* pandas.Series: 其元素个数应该和 series 元素个数相同,对于 series 中每个元素都使用 v 中对应的值计算理论价
t (float / pandas.Series): 年化到期时间,例如:还有 100 天到期,则年化到期时间为 100/360
* float: 对于 series 中每个元素都使用相同的 t 计算理论价
* pandas.Series: 其元素个数应该和 series 元素个数相同,对于 series 中每个元素都使用 t 中对应的值计算理论价
d1 (None | pandas.Series): [可选] 序列对应的 BS 公式中 b1 值
Returns:
pandas.Series: 该序列的 gamma 值
Example::
import pandas as pd
from tqsdk import TqApi, TqAuth, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote("SHFE.cu2006")
ks = api.get_kline_serial("SHFE.cu2006", 24 * 60 * 60, 10)
v = tafunc.get_his_volatility(ks, quote) # 历史波动率
option = api.get_quote("SHFE.cu2006C45000")
klines = api.get_kline_serial(["SHFE.cu2006C45000", "SHFE.cu2006"], 24 * 60 * 60, 10)
t = tafunc.get_t(klines, option.expire_datetime)
impv = tafunc.get_impv(klines["close1"], klines["close"], 45000, 0.025, v, t, "CALL")
gamma = tafunc.get_gamma(klines["close1"], 45000, 0.025, v, t)
print("gamma", list(gamma))
api.close()
"""
if d1 is None:
d1 = _get_d1(series, k, r, v, t)
return pd.Series(np.where(np.isnan(d1), np.nan, _get_pdf(d1) / (series * v * np.sqrt(t))))
def get_theta(series, k, r, v, t, option_class, d1=None):
"""
计算期权希腊指标 theta 值
Args:
series (pandas.Series): 标的价格序列
k (float): 期权行权价
r (float): 无风险利率
v (float / pandas.Series): 波动率
* float: 对于 series 中每个元素都使用相同的 v 计算理论价
* pandas.Series: 其元素个数应该和 series 元素个数相同,对于 series 中每个元素都使用 v 中对应的值计算理论价
t (float / pandas.Series): 年化到期时间,例如:还有 100 天到期,则年化到期时间为 100/360
* float: 对于 series 中每个元素都使用相同的 t 计算理论价
* pandas.Series: 其元素个数应该和 series 元素个数相同,对于 series 中每个元素都使用 t 中对应的值计算理论价
option_class (str / pandas.Series): 期权方向,必须是两者其一,否则返回的序列值全部为 nan
* str: "CALL" 或者 "PUT"
* pandas.Series: 其元素个数应该和 series 元素个数相同,每个元素的值为 "CALL" 或者 "PUT"
d1 (None | pandas.Series): [可选] 序列对应的 BS 公式中 b1 值
Returns:
pandas.Series: 该序列的 theta 值
Example::
import pandas as pd
from tqsdk import TqApi, TqAuth, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote("SHFE.cu2006")
ks = api.get_kline_serial("SHFE.cu2006", 24 * 60 * 60, 10)
v = tafunc.get_his_volatility(ks, quote) # 历史波动率
option = api.get_quote("SHFE.cu2006C45000")
klines = api.get_kline_serial(["SHFE.cu2006C45000", "SHFE.cu2006"], 24 * 60 * 60, 10)
t = tafunc.get_t(klines, option.expire_datetime)
impv = tafunc.get_impv(klines["close1"], klines["close"], 45000, 0.025, v, t, "CALL")
theta = tafunc.get_theta(klines["close1"], 45000, 0.025, v, t, "CALL")
print("theta", list(theta))
api.close()
"""
o = _get_options_class(series, option_class=option_class)
if d1 is None:
d1 = _get_d1(series, k, r, v, t)
d2 = pd.Series(np.where(np.isnan(d1), np.nan, d1 - v * np.sqrt(t)))
return pd.Series(np.where(np.isnan(d1), np.nan, pd.Series(
-v * series * _get_pdf(d1) / (2 * np.sqrt(t)) - o * r * k * np.exp(-r * t) * _get_cdf(o * d2))))
def get_vega(series, k, r, v, t, d1=None):
"""
计算期权希腊指标 vega 值
Args:
series (pandas.Series): 标的价格序列
k (float): 期权行权价
r (float): 无风险利率
v (float / pandas.Series): 波动率
* float: 对于 series 中每个元素都使用相同的 v 计算理论价
* pandas.Series: 其元素个数应该和 series 元素个数相同,对于 series 中每个元素都使用 v 中对应的值计算理论价
t (float / pandas.Series): 年化到期时间,例如:还有 100 天到期,则年化到期时间为 100/360
* float: 对于 series 中每个元素都使用相同的 t 计算理论价
* pandas.Series: 其元素个数应该和 series 元素个数相同,对于 series 中每个元素都使用 t 中对应的值计算理论价
d1 (None | pandas.Series): [可选] 序列对应的 BS 公式中 b1 值
Returns:
pandas.Series: 该序列的 vega 值
Example::
import pandas as pd
from tqsdk import TqApi, TqAuth, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote("SHFE.cu2006")
ks = api.get_kline_serial("SHFE.cu2006", 24 * 60 * 60, 10)
v = tafunc.get_his_volatility(ks, quote) # 历史波动率
option = api.get_quote("SHFE.cu2006C45000")
klines = api.get_kline_serial(["SHFE.cu2006C45000", "SHFE.cu2006"], 24 * 60 * 60, 10)
t = tafunc.get_t(klines, option.expire_datetime)
impv = tafunc.get_impv(klines["close1"], klines["close"], 45000, 0.025, v, t, "CALL")
vega = tafunc.get_vega(klines["close1"], 45000, 0.025, v, t)
print("vega", list(vega))
api.close()
"""
if d1 is None:
d1 = _get_d1(series, k, r, v, t)
return pd.Series(np.where(np.isnan(d1), np.nan, series * np.sqrt(t) * _get_pdf(d1)))
def get_rho(series, k, r, v, t, option_class, d1=None):
"""
计算期权希腊指标 rho 值
Args:
series (pandas.Series): 标的价格序列
k (float): 期权行权价
r (float): 无风险利率
v (float / pandas.Series): 波动率
* float: 对于 series 中每个元素都使用相同的 v 计算理论价
* pandas.Series: 其元素个数应该和 series 元素个数相同,对于 series 中每个元素都使用 v 中对应的值计算理论价
t (float / pandas.Series): 年化到期时间,例如:还有 100 天到期,则年化到期时间为 100/360
* float: 对于 series 中每个元素都使用相同的 t 计算理论价
* pandas.Series: 其元素个数应该和 series 元素个数相同,对于 series 中每个元素都使用 t 中对应的值计算理论价
option_class (str / pandas.Series): 期权方向,必须是两者其一,否则返回的序列值全部为 nan
* str: "CALL" 或者 "PUT"
* pandas.Series: 其元素个数应该和 series 元素个数相同,每个元素的值为 "CALL" 或者 "PUT"
d1 (None | pandas.Series): [可选] 序列对应的 BS 公式中 b1 值
Returns:
pandas.Series: 该序列的 rho 值
Example::
import pandas as pd
from tqsdk import TqApi, TqAuth, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote("SHFE.cu2006")
ks = api.get_kline_serial("SHFE.cu2006", 24 * 60 * 60, 10)
v = tafunc.get_his_volatility(ks, quote) # 历史波动率
option = api.get_quote("SHFE.cu2006C45000")
klines = api.get_kline_serial(["SHFE.cu2006C45000", "SHFE.cu2006"], 24 * 60 * 60, 10)
t = tafunc.get_t(klines, option.expire_datetime)
impv = tafunc.get_impv(klines["close1"], klines["close"], 45000, 0.025, v, t, "CALL")
rho = tafunc.get_rho(klines["close1"], 45000, 0.025, v, t, "CALL")
print("rho", list(rho))
api.close()
"""
o = _get_options_class(series, option_class=option_class)
if d1 is None:
d1 = _get_d1(series, k, r, v, t)
d2 = pd.Series(np.where(np.isnan(d1), np.nan, d1 - v * np.sqrt(t)))
return pd.Series(np.where(np.isnan(d1), np.nan, o * k * t * np.exp(-r * t) * _get_cdf(o * d2)))
def get_impv(series, series_option, k, r, init_v, t, option_class):
"""
计算期权隐含波动率
Args:
series (pandas.Series): 标的价格序列
series_option (pandas.Series): 期权价格序列,与 series 长度应该相同
k (float): 期权行权价
r (float): 无风险利率
init_v (float / pandas.Series): 初始波动率,迭代初始值
* float: 对于 series 中每个元素都使用相同的 init_v 计算隐含波动率
* pandas.Series: 其元素个数应该和 series 元素个数相同,对于 series 中每个元素都使用 init_v 中对应的值计算隐含波动率
t (float / pandas.Series): 年化到期时间,例如:还有 100 天到期,则年化到期时间为 100/360
* float: 对于 series 中每个元素都使用相同的 t 计算理论价
* pandas.Series: 其元素个数应该和 series 元素个数相同,对于 series 中每个元素都使用 t 中对应的值计算理论价
option_class (str / pandas.Series): 期权方向,必须是两者其一,否则返回的序列值全部为 nan
* str: "CALL" 或者 "PUT"
* pandas.Series: 其元素个数应该和 series 元素个数相同,每个元素的值为 "CALL" 或者 "PUT"
Returns:
pandas.Series: 该序列的隐含波动率
Example::
import pandas as pd
from tqsdk import TqApi, TqAuth, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote("SHFE.cu2006")
ks = api.get_kline_serial("SHFE.cu2006", 24 * 60 * 60, 10)
v = tafunc.get_his_volatility(ks, quote) # 历史波动率
option = api.get_quote("SHFE.cu2006C45000")
klines = api.get_kline_serial(["SHFE.cu2006C45000", "SHFE.cu2006"], 24 * 60 * 60, 10)
t = tafunc.get_t(klines, option.expire_datetime)
impv = tafunc.get_impv(klines["close1"], klines["close"], 45000, 0.025, v, t, "CALL")
print("impv", list((impv * 100).round(2)))
api.close()
"""
o = _get_options_class(series, option_class=option_class)
lower_limit = o * (series - k * np.exp(-r * t))
x = pd.Series(np.where((series_option < lower_limit) | (t <= 0), np.nan, init_v))
y = pd.Series(np.where(np.isnan(x), np.nan, get_bs_price(series, k, r, x, t, option_class)))
vega = get_vega(series, k, r, x, t)
diff_x = pd.Series(np.where(np.isnan(vega) | (vega < 1e-8), np.nan, (series_option - y) / vega))
while not pd.DataFrame.all((np.abs(series_option - y) < 1e-8) | np.isnan(diff_x)):
x = pd.Series(np.where(np.isnan(x) | np.isnan(diff_x), x,
np.where(x + diff_x < 0, x / 2,
np.where(diff_x > x / 2, x * 1.5, x + diff_x))))
y = pd.Series(np.where(np.isnan(x), np.nan, get_bs_price(series, k, r, x, t, option_class)))
vega = get_vega(series, k, r, x, t)
diff_x = pd.Series(np.where(np.isnan(vega) | (vega < 1e-8), np.nan, (series_option - y) / vega))
return x
def get_ticks_info(df):
"""
计算 ticks 开平方向
Args:
df (pandas.DataFrame): Dataframe 格式的 ticks 序列
Returns:
pandas.Series: 返回序列的开平方向序列
Example::
from tqsdk import TqApi, TqAuth, tafunc
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
ticks = api.get_tick_serial('SHFE.cu2006', 100)
ticksinfo = tafunc.get_ticks_info(ticks)
for i, v in ticksinfo.items():
print(f"{tafunc.time_to_str(ticks['datetime'][i])[5:21]} {ticks['last_price'][i]} {v}")
api.close()
# 预计的输出是这样的:
04-27 10:54:11.5 42640.0 多换
04-27 10:54:12.0 42640.0 多换
04-27 10:54:16.5 42640.0 多换
......
04-27 10:55:10.0 42660.0 双平
04-27 10:55:10.5 42660.0 双平
04-27 10:55:14.0 42670.0 双平
"""
if "open_interest" not in df.keys(): # df 不是 ticks 是 klines
raise Exception(f"get_ticks_info 参数必须是 ticks,由 api.get_tick_serial 返回的对象。")
df_pre = df.copy().shift(1)
df_pre["price_diff"] = df["last_price"] - df_pre["last_price"]
df_pre["oi_diff"] = df["open_interest"] - df_pre["open_interest"]
df_pre["vol_diff"] = df["volume"] - df_pre["volume"]
df_pre["pc"] = np.where(df["last_price"] <= df_pre["bid_price1"], -1,
np.where(df["last_price"] >= df_pre["ask_price1"], 1, np.sign(df_pre["price_diff"])))
pc_g = df_pre["pc"] > 0
df_pre["info"] = pd.Series(np.where(df_pre["oi_diff"] > 0, np.where(pc_g, "多开", "空开"),
np.where(df_pre["oi_diff"] < 0, np.where(pc_g, "空平", "多平"),
np.where(df_pre["oi_diff"] == 0, np.where(pc_g, "多换", "空换"), ""))))
df_pre.loc[df_pre["pc"] == 0, "info"] = "换手"
df_pre.loc[(df_pre["oi_diff"] < 0) & (df_pre["oi_diff"] + df_pre["vol_diff"] == 0), "info"] = "双平"
df_pre.loc[(df_pre["oi_diff"] > 0) & (df_pre["oi_diff"] == df_pre["vol_diff"]), "info"] = "双开"
df_pre.loc[df_pre["vol_diff"] == 0, "info"] = ""
return df_pre["info"]
def get_dividend_df(stock_dividend_ratio, cash_dividend_ratio):
"""
计算复权系数矩阵
Args:
stock_dividend_ratio (list): 除权表(可以由 quote.stock_dividend_ratio 取得)
cash_dividend_ratio (list): 除息表(可以由 quote.cash_dividend_ratio 取得)
Returns:
pandas.Dataframe: 复权系数矩阵, Dataframe 对象有 ["datetime", "stock_dividend", "cash_dividend"] 三列。
"""
# 除权矩阵
stock_dividend_df = pd.DataFrame({
"datetime": [datetime.datetime.strptime(s.split(",")[0], "%Y%m%d").timestamp() * 1e9 for s in
stock_dividend_ratio],
"stock_dividend": np.array([float(s.split(",")[1]) for s in stock_dividend_ratio])
})
# 除息矩阵
cash_dividend_df = pd.DataFrame({
"datetime": [datetime.datetime.strptime(s.split(",")[0], "%Y%m%d").timestamp() * 1e9 for s in
cash_dividend_ratio],
"cash_dividend": [float(s.split(",")[1]) for s in cash_dividend_ratio]
})
# 除权除息矩阵
dividend_df = pd.merge(stock_dividend_df, cash_dividend_df, on=['datetime'], how="outer", sort=True)
dividend_df.fillna(0.0, inplace=True)
return dividend_df
def get_dividend_factor(dividend_df, last_item, item):
"""
返回 item 项对应的复权因子。
Args:
dividend_df (pandas.Dataframe): 除权除息矩阵表
last_item (dict): 前一个 tickItem / klineItem
item (dict): 当前 tickItem / klineItem
Returns:
float: 复权因子
"""
last_dt = last_item['datetime']
dt = item['datetime']
if last_dt and dt:
gt = dividend_df['datetime'].gt(last_dt)
if gt.any():
dividend_first = dividend_df[gt].iloc[0]
if dt >= dividend_first['datetime']:
c = last_item['close'] if last_item['close'] else last_item['last_price']
return (1 - dividend_first['cash_dividend'] / c) / (1 + dividend_first['stock_dividend'])
return 1
def _tq_pstdev(data: Series, mu: float):
"""
计算标准差
标准库提供的方法 statistics.pstdev 在 py3.6,py3.7 版本下参数 mean 不能设定为指定值,所以这里另外计算。
"""
n = data.shape[0]
assert n >= 1
return math.sqrt(sum((data - mu)**2) / n)
def get_sharp(series, trading_days_of_year=250, r=0.025):
"""
年化夏普率
Args:
series (pandas.Series): 每日收益率序列
trading_days_of_year (int): 年化交易日数量
r (float): 无风险利率
Returns:
float: 年化夏普率
"""
rf = _get_daily_risk_free(trading_days_of_year, r)
mean = series.mean()
stddev = _tq_pstdev(series, mu=mean)
return trading_days_of_year ** (1 / 2) * (mean - rf) / stddev if stddev else float("inf")
def get_sortino(series, trading_days_of_year=250, r=0.025):
"""
年化索提诺比率
Args:
series (pandas.Series): 每日收益率序列
trading_days_of_year (int): 年化交易日数量
r (float): 无风险利率
Returns:
float: 年化索提诺比率
"""
rf = _get_daily_risk_free(trading_days_of_year, r)
mean = series.mean()
left_daily_yield = series.loc[series < rf]
stddev = _tq_pstdev(left_daily_yield, mu=rf) if left_daily_yield.shape[0] > 0 else 0
return (trading_days_of_year * left_daily_yield.shape[0] / series.shape[0]) ** (1 / 2) * (mean - rf) / stddev if stddev else float("inf")
def get_calmar(series, max_drawdown, trading_days_of_year=250, r=0.025):
"""
年化卡玛比率
Args:
series (pandas.Series): 每日收益率序列
max_drawdown (float): 最大回撤
trading_days_of_year (int): 年化交易日数量
r (float): 无风险利率
Returns:
float: 年化夏普率
"""
rf = _get_daily_risk_free(trading_days_of_year, r)
if max_drawdown and max_drawdown == max_drawdown:
mean = series.mean()
return trading_days_of_year ** (1 / 2) * (mean - rf) / max_drawdown
return float("inf")
def _get_daily_risk_free(trading_days_of_year, r):
"""日化无风险利率"""
return pow(r + 1, 1 / trading_days_of_year) - 1
def _cum_counts(s: Series):
"""
统计连续为1的个数, 用于计算最大连续盈利/亏损天数
input: [0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0]
output: [0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 2, 0, 1, 0, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 0, 0]
"""
return s * (s.groupby((s != s.shift()).cumsum()).cumcount() + 1)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/study_hard__day_by_day/tqsdk-python.git
git@gitee.com:study_hard__day_by_day/tqsdk-python.git
study_hard__day_by_day
tqsdk-python
tqsdk-python
master

搜索帮助