代码拉取完成,页面将自动刷新
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from pix2pix import Pix2pix
iters = 200*400 # taken from pix2pix paper §5.2
batch_size = 1 # taken from pix2pix paper §5.2
A = np.load('dataset_y.npy') # Architectural labels
B = np.load('dataset_x.npy') # Photo
with tf.device('/gpu:0'):
model = Pix2pix(256, 256, ichan=3, ochan=3)
saver = tf.train.Saver()
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)) as sess:
sess.run(tf.global_variables_initializer())
for step in range(iters):
a = np.expand_dims(A[step % A.shape[0]], axis=0)
b = 2. * np.expand_dims(B[step % B.shape[0]], axis=0) - 1. # normalize because generator use tanh activation in its output layer
gloss_curr, dloss_curr = model.train_step(sess, a, a, b)
print('Step %d: G loss: %f | D loss: %f' % (step, gloss_curr, dloss_curr))
if step % 500 == 0:
fig = plt.figure()
fig.set_size_inches(10, 10)
fig.subplots_adjust(left=0, bottom=0,
right=1, top=1, wspace=0, hspace=0.1)
p = np.random.permutation(B.shape[0])
for i in range(0, 81, 3):
# Plot 3 images: First is the architectural label, second the generator output, third the ground truth
fig.add_subplot(9, 9, i + 1)
plt.imshow(A[p[i // 3]])
plt.axis('off')
fig.add_subplot(9, 9, i + 2)
plt.imshow((model.sample_generator(sess, np.expand_dims(A[p[i // 3]], axis=0), is_training=True)[0] + 1.) / 2.)
plt.axis('off')
fig.add_subplot(9, 9, i +3)
plt.imshow(B[p[i // 3]])
plt.axis('off')
plt.savefig('images/iter_%d.jpg' % step)
plt.close()
if step % 3000 == 0:
# Save the model
save_path = saver.save(sess, "models/model.ckpt")
print("Model saved in file: %s" % save_path)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。