代码拉取完成,页面将自动刷新
/*
* Copyright Confluent Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.confluent.examples.streams;
import io.confluent.examples.streams.kafka.EmbeddedSingleNodeKafkaCluster;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.ByteArraySerializer;
import org.apache.kafka.common.serialization.LongDeserializer;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.Produced;
import org.apache.kafka.streams.kstream.Transformer;
import org.apache.kafka.streams.kstream.TransformerSupplier;
import org.apache.kafka.streams.processor.ProcessorContext;
import org.apache.kafka.streams.state.KeyValueStore;
import org.apache.kafka.streams.state.StoreBuilder;
import org.apache.kafka.streams.state.Stores;
import org.apache.kafka.test.TestUtils;
import org.junit.BeforeClass;
import org.junit.ClassRule;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
import java.util.Optional;
import java.util.Properties;
import static org.assertj.core.api.Assertions.assertThat;
/**
* End-to-end integration test that shows how to use state stores in the Kafka Streams DSL.
*
* Don't pay too much attention to the output data of the application (or to the output data of the
* Transformer). What we want to showcase here is the technical interaction between state stores
* and the Kafka Streams DSL, at the example of {@link KStream#transform(TransformerSupplier,
* String...)}. What the application is actually computing is of secondary concern.
*
* Note: This example works with Java 8+ only.
*/
public class StateStoresInTheDSLIntegrationTest {
@ClassRule
public static final EmbeddedSingleNodeKafkaCluster CLUSTER = new EmbeddedSingleNodeKafkaCluster();
private static String inputTopic = "inputTopic";
private static String outputTopic = "outputTopic";
@BeforeClass
public static void startKafkaCluster() throws Exception {
CLUSTER.createTopic(inputTopic);
CLUSTER.createTopic(outputTopic);
}
/**
* Returns a transformer that computes running, ever-incrementing word counts.
*/
private static final class WordCountTransformerSupplier
implements TransformerSupplier<byte[], String, KeyValue<String, Long>> {
final private String stateStoreName;
public WordCountTransformerSupplier(String stateStoreName) {
this.stateStoreName = stateStoreName;
}
@Override
public Transformer<byte[], String, KeyValue<String, Long>> get() {
return new Transformer<byte[], String, KeyValue<String, Long>>() {
private KeyValueStore<String, Long> stateStore;
@SuppressWarnings("unchecked")
@Override
public void init(ProcessorContext context) {
stateStore = (KeyValueStore<String, Long>) context.getStateStore(stateStoreName);
}
@Override
public KeyValue<String, Long> transform(byte[] key, String value) {
// For simplification (and unlike the traditional wordcount) we assume that the value is
// a single word, i.e. we don't split the value by whitespace into potentially one or more
// words.
Optional<Long> count = Optional.ofNullable(stateStore.get(value));
Long incrementedCount = count.orElse(0L) + 1;
stateStore.put(value, incrementedCount);
return KeyValue.pair(value, incrementedCount);
}
@Override
public KeyValue<String, Long> punctuate(long timestamp) {
// Not needed
return null;
}
@Override
public void close() {
// Note: The store should NOT be closed manually here via `stateStore.close()`!
// The Kafka Streams API will automatically close stores when necessary.
}
};
}
}
@Test
public void shouldAllowStateStoreAccessFromDSL() throws Exception {
List<String> inputValues = Arrays.asList(
"foo",
"bar",
"foo",
"quux",
"bar",
"foo");
List<KeyValue<String, Long>> expectedRecords = Arrays.asList(
new KeyValue<>("foo", 1L),
new KeyValue<>("bar", 1L),
new KeyValue<>("foo", 2L),
new KeyValue<>("quux", 1L),
new KeyValue<>("bar", 2L),
new KeyValue<>("foo", 3L)
);
//
// Step 1: Configure and start the processor topology.
//
StreamsBuilder builder = new StreamsBuilder();
Properties streamsConfiguration = new Properties();
streamsConfiguration.put(StreamsConfig.APPLICATION_ID_CONFIG, "state-store-dsl-lambda-integration-test");
streamsConfiguration.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, CLUSTER.bootstrapServers());
streamsConfiguration.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.ByteArray().getClass().getName());
streamsConfiguration.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
streamsConfiguration.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
// Use a temporary directory for storing state, which will be automatically removed after the test.
streamsConfiguration.put(StreamsConfig.STATE_DIR_CONFIG, TestUtils.tempDirectory().getAbsolutePath());
// Create a state store manually.
StoreBuilder<KeyValueStore<String, Long>> wordCountsStore = Stores.keyValueStoreBuilder(
Stores.persistentKeyValueStore("WordCountsStore"),
Serdes.String(),
Serdes.Long())
.withCachingEnabled();
// Important (1 of 2): You must add the state store to the topology, otherwise your application
// will fail at run-time (because the state store is referred to in `transform()` below.
builder.addStateStore(wordCountsStore);
// Read the input data. (In this example we ignore whatever is stored in the record keys.)
KStream<byte[], String> words = builder.stream(inputTopic);
// Important (2 of 2): When we call `transform()` we must provide the name of the state store
// that is going to be used by the `Transformer` returned by `WordCountTransformerSupplier` as
// the second parameter of `transform()` (note: we are also passing the state store name to the
// constructor of `WordCountTransformerSupplier`, which we do primarily for cleaner code).
// Otherwise our application will fail at run-time when attempting to operate on the state store
// (within the transformer) because `ProcessorContext#getStateStore("WordCountsStore")` will
// return `null`.
KStream<String, Long> wordCounts =
words.transform(new WordCountTransformerSupplier(wordCountsStore.name()), wordCountsStore.name());
wordCounts.to(outputTopic, Produced.with(Serdes.String(), Serdes.Long()));
KafkaStreams streams = new KafkaStreams(builder.build(), streamsConfiguration);
streams.start();
//
// Step 2: Produce some input data to the input topic.
//
Properties producerConfig = new Properties();
producerConfig.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, CLUSTER.bootstrapServers());
producerConfig.put(ProducerConfig.ACKS_CONFIG, "all");
producerConfig.put(ProducerConfig.RETRIES_CONFIG, 0);
producerConfig.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, ByteArraySerializer.class);
producerConfig.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
IntegrationTestUtils.produceValuesSynchronously(inputTopic, inputValues, producerConfig);
//
// Step 3: Verify the application's output data.
//
Properties consumerConfig = new Properties();
consumerConfig.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, CLUSTER.bootstrapServers());
consumerConfig.put(ConsumerConfig.GROUP_ID_CONFIG, "state-store-dsl-lambda-integration-test-standard-consumer");
consumerConfig.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
consumerConfig.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
consumerConfig.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, LongDeserializer.class);
List<KeyValue<String, Long>> actualValues = IntegrationTestUtils.waitUntilMinKeyValueRecordsReceived(consumerConfig,
outputTopic, expectedRecords.size());
streams.close();
assertThat(actualValues).isEqualTo(expectedRecords);
}
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。