1 Star 1 Fork 1

一叶浮尘/kafka-streams-examples

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
StreamToStreamJoinIntegrationTest.java 7.77 KB
一键复制 编辑 原始数据 按行查看 历史
Damian Guy 提交于 8年前 . address some comments
/*
* Copyright Confluent Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.confluent.examples.streams;
import io.confluent.examples.streams.kafka.EmbeddedSingleNodeKafkaCluster;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.JoinWindows;
import org.apache.kafka.streams.kstream.Joined;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.test.TestUtils;
import org.junit.BeforeClass;
import org.junit.ClassRule;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
import java.util.Properties;
import java.util.concurrent.TimeUnit;
import static org.assertj.core.api.Assertions.assertThat;
/**
* End-to-end integration test that demonstrates how to perform a join between two KStreams.
*
* Note: This example uses lambda expressions and thus works with Java 8+ only.
*/
public class StreamToStreamJoinIntegrationTest {
@ClassRule
public static final EmbeddedSingleNodeKafkaCluster CLUSTER = new EmbeddedSingleNodeKafkaCluster();
private static final String adImpressionsTopic = "adImpressions";
private static final String adClicksTopic = "adClicks";
private static final String outputTopic = "output-topic";
@BeforeClass
public static void startKafkaCluster() throws Exception {
CLUSTER.createTopic(adImpressionsTopic);
CLUSTER.createTopic(adClicksTopic);
CLUSTER.createTopic(outputTopic);
}
@Test
public void shouldJoinTwoStreams() throws Exception {
// Input 1: Ad impressions
List<KeyValue<String, String>> inputAdImpressions = Arrays.asList(
new KeyValue<>("car-advertisement", "shown"),
new KeyValue<>("newspaper-advertisement", "shown"),
new KeyValue<>("gadget-advertisement", "shown")
);
// Input 2: Ad clicks
List<KeyValue<String, String>> inputAdClicks = Arrays.asList(
new KeyValue<>("newspaper-advertisement", "clicked"),
new KeyValue<>("gadget-advertisement", "clicked"),
new KeyValue<>("newspaper-advertisement", "clicked")
);
List<KeyValue<String, String>> expectedResults = Arrays.asList(
new KeyValue<>("car-advertisement", "shown/null"),
new KeyValue<>("newspaper-advertisement", "shown/null"),
new KeyValue<>("gadget-advertisement", "shown/null"),
new KeyValue<>("newspaper-advertisement", "shown/clicked"),
new KeyValue<>("gadget-advertisement", "shown/clicked"),
new KeyValue<>("newspaper-advertisement", "shown/clicked")
);
//
// Step 1: Configure and start the processor topology.
//
final Serde<String> stringSerde = Serdes.String();
Properties streamsConfiguration = new Properties();
streamsConfiguration.put(StreamsConfig.APPLICATION_ID_CONFIG, "stream-stream-join-lambda-integration-test");
streamsConfiguration.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, CLUSTER.bootstrapServers());
streamsConfiguration.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
streamsConfiguration.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
// The commit interval for flushing records to state stores and downstream must be lower than
// this integration test's timeout (30 secs) to ensure we observe the expected processing results.
streamsConfiguration.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG, 10 * 1000);
streamsConfiguration.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
// Use a temporary directory for storing state, which will be automatically removed after the test.
streamsConfiguration.put(StreamsConfig.STATE_DIR_CONFIG, TestUtils.tempDirectory().getAbsolutePath());
StreamsBuilder builder = new StreamsBuilder();
KStream<String, String> alerts = builder.stream(adImpressionsTopic);
KStream<String, String> incidents = builder.stream(adClicksTopic);
// In this example, we opt to perform an OUTER JOIN between the two streams. We picked this
// join type to show how the Streams API will send further join updates downstream whenever,
// for the same join key (e.g. "newspaper-advertisement"), we receive an update from either of
// the two joined streams during the defined join window.
KStream<String, String> impressionsAndClicks = alerts.outerJoin(incidents,
(impressionValue, clickValue) -> impressionValue + "/" + clickValue,
// KStream-KStream joins are always windowed joins, hence we must provide a join window.
JoinWindows.of(TimeUnit.SECONDS.toMillis(5)));
// Write the results to the output topic.
impressionsAndClicks.to(outputTopic);
KafkaStreams streams = new KafkaStreams(builder.build(), streamsConfiguration);
streams.start();
//
// Step 2: Publish ad impressions.
//
Properties alertsProducerConfig = new Properties();
alertsProducerConfig.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, CLUSTER.bootstrapServers());
alertsProducerConfig.put(ProducerConfig.ACKS_CONFIG, "all");
alertsProducerConfig.put(ProducerConfig.RETRIES_CONFIG, 0);
alertsProducerConfig.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
alertsProducerConfig.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
IntegrationTestUtils.produceKeyValuesSynchronously(adImpressionsTopic, inputAdImpressions, alertsProducerConfig);
//
// Step 3: Publish ad clicks.
//
Properties incidentsProducerConfig = new Properties();
incidentsProducerConfig.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, CLUSTER.bootstrapServers());
incidentsProducerConfig.put(ProducerConfig.ACKS_CONFIG, "all");
incidentsProducerConfig.put(ProducerConfig.RETRIES_CONFIG, 0);
incidentsProducerConfig.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
incidentsProducerConfig.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
IntegrationTestUtils.produceKeyValuesSynchronously(adClicksTopic, inputAdClicks, incidentsProducerConfig);
//
// Step 4: Verify the application's output data.
//
Properties consumerConfig = new Properties();
consumerConfig.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, CLUSTER.bootstrapServers());
consumerConfig.put(ConsumerConfig.GROUP_ID_CONFIG, "stream-stream-join-lambda-integration-test-standard-consumer");
consumerConfig.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
consumerConfig.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
consumerConfig.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
List<KeyValue<String, String>> actualResults = IntegrationTestUtils.waitUntilMinKeyValueRecordsReceived(consumerConfig,
outputTopic, expectedResults.size());
streams.close();
assertThat(actualResults).containsExactlyElementsOf(expectedResults);
}
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Java
1
https://gitee.com/thomas9696/kafka-streams-examples.git
git@gitee.com:thomas9696/kafka-streams-examples.git
thomas9696
kafka-streams-examples
kafka-streams-examples
master

搜索帮助