代码拉取完成,页面将自动刷新
# Time: O(nlon + n * t), t is the value of target.
# Space: O(t)
# Given an integer array with all positive numbers and no duplicates,
# find the number of possible combinations that add up to a positive integer target.
#
# Example:
#
# nums = [1, 2, 3]
# target = 4
#
# The possible combination ways are:
# (1, 1, 1, 1)
# (1, 1, 2)
# (1, 2, 1)
# (1, 3)
# (2, 1, 1)
# (2, 2)
# (3, 1)
#
# Note that different sequences are counted as different combinations.
#
# Therefore the output is 7.
# Follow up:
# What if negative numbers are allowed in the given array?
# How does it change the problem?
# What limitation we need to add to the question to allow negative numbers?
class Solution(object):
def combinationSum4(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: int
"""
dp = [0] * (target+1)
dp[0] = 1
nums.sort()
for i in xrange(1, target+1):
for j in xrange(len(nums)):
if nums[j] <= i:
dp[i] += dp[i - nums[j]]
else:
break
return dp[target]
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。