代码拉取完成,页面将自动刷新
// Copyright 2015 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package rafthttp
import (
"net/http"
"time"
"github.com/coreos/etcd/Godeps/_workspace/src/golang.org/x/net/context"
"github.com/coreos/etcd/etcdserver/stats"
"github.com/coreos/etcd/pkg/types"
"github.com/coreos/etcd/raft"
"github.com/coreos/etcd/raft/raftpb"
)
const (
DialTimeout = time.Second
// ConnRead/WriteTimeout is the i/o timeout set on each connection rafthttp pkg creates.
// A 5 seconds timeout is good enough for recycling bad connections. Or we have to wait for
// tcp keepalive failing to detect a bad connection, which is at minutes level.
// For long term streaming connections, rafthttp pkg sends application level linkHeartbeat
// to keep the connection alive.
// For short term pipeline connections, the connection MUST be killed to avoid it being
// put back to http pkg connection pool.
ConnReadTimeout = 5 * time.Second
ConnWriteTimeout = 5 * time.Second
recvBufSize = 4096
// maxPendingProposals holds the proposals during one leader election process.
// Generally one leader election takes at most 1 sec. It should have
// 0-2 election conflicts, and each one takes 0.5 sec.
// We assume the number of concurrent proposers is smaller than 4096.
// One client blocks on its proposal for at least 1 sec, so 4096 is enough
// to hold all proposals.
maxPendingProposals = 4096
streamApp = "streamMsgApp"
streamAppV2 = "streamMsgAppV2"
streamMsg = "streamMsg"
pipelineMsg = "pipeline"
)
type Peer interface {
// Send sends the message to the remote peer. The function is non-blocking
// and has no promise that the message will be received by the remote.
// When it fails to send message out, it will report the status to underlying
// raft.
Send(m raftpb.Message)
// Update updates the urls of remote peer.
Update(urls types.URLs)
// setTerm sets the term of ongoing communication.
setTerm(term uint64)
// attachOutgoingConn attachs the outgoing connection to the peer for
// stream usage. After the call, the ownership of the outgoing
// connection hands over to the peer. The peer will close the connection
// when it is no longer used.
attachOutgoingConn(conn *outgoingConn)
// Stop performs any necessary finalization and terminates the peer
// elegantly.
Stop()
}
// peer is the representative of a remote raft node. Local raft node sends
// messages to the remote through peer.
// Each peer has two underlying mechanisms to send out a message: stream and
// pipeline.
// A stream is a receiver initialized long-polling connection, which
// is always open to transfer messages. Besides general stream, peer also has
// a optimized stream for sending msgApp since msgApp accounts for large part
// of all messages. Only raft leader uses the optimized stream to send msgApp
// to the remote follower node.
// A pipeline is a series of http clients that send http requests to the remote.
// It is only used when the stream has not been established.
type peer struct {
// id of the remote raft peer node
id types.ID
r Raft
msgAppWriter *streamWriter
writer *streamWriter
pipeline *pipeline
msgAppReader *streamReader
sendc chan raftpb.Message
recvc chan raftpb.Message
propc chan raftpb.Message
newURLsC chan types.URLs
termc chan uint64
// for testing
pausec chan struct{}
resumec chan struct{}
stopc chan struct{}
done chan struct{}
}
func startPeer(tr http.RoundTripper, urls types.URLs, local, to, cid types.ID, r Raft, fs *stats.FollowerStats, errorc chan error, term uint64) *peer {
picker := newURLPicker(urls)
status := newPeerStatus(to)
p := &peer{
id: to,
r: r,
msgAppWriter: startStreamWriter(to, status, fs, r),
writer: startStreamWriter(to, status, fs, r),
pipeline: newPipeline(tr, picker, local, to, cid, status, fs, r, errorc),
sendc: make(chan raftpb.Message),
recvc: make(chan raftpb.Message, recvBufSize),
propc: make(chan raftpb.Message, maxPendingProposals),
newURLsC: make(chan types.URLs),
termc: make(chan uint64),
pausec: make(chan struct{}),
resumec: make(chan struct{}),
stopc: make(chan struct{}),
done: make(chan struct{}),
}
// Use go-routine for process of MsgProp because it is
// blocking when there is no leader.
ctx, cancel := context.WithCancel(context.Background())
go func() {
for {
select {
case mm := <-p.propc:
if err := r.Process(ctx, mm); err != nil {
plog.Warningf("failed to process raft message (%v)", err)
}
case <-p.stopc:
return
}
}
}()
p.msgAppReader = startStreamReader(tr, picker, streamTypeMsgAppV2, local, to, cid, status, p.recvc, p.propc, errorc, term)
reader := startStreamReader(tr, picker, streamTypeMessage, local, to, cid, status, p.recvc, p.propc, errorc, term)
go func() {
var paused bool
for {
select {
case m := <-p.sendc:
if paused {
continue
}
writec, name := p.pick(m)
select {
case writec <- m:
default:
p.r.ReportUnreachable(m.To)
if isMsgSnap(m) {
p.r.ReportSnapshot(m.To, raft.SnapshotFailure)
}
if status.isActive() {
plog.Warningf("dropped %s to %s since %s's sending buffer is full", m.Type, p.id, name)
} else {
plog.Debugf("dropped %s to %s since %s's sending buffer is full", m.Type, p.id, name)
}
}
case mm := <-p.recvc:
if err := r.Process(context.TODO(), mm); err != nil {
plog.Warningf("failed to process raft message (%v)", err)
}
case urls := <-p.newURLsC:
picker.update(urls)
case <-p.pausec:
paused = true
case <-p.resumec:
paused = false
case <-p.stopc:
cancel()
p.msgAppWriter.stop()
p.writer.stop()
p.pipeline.stop()
p.msgAppReader.stop()
reader.stop()
close(p.done)
return
}
}
}()
return p
}
func (p *peer) Send(m raftpb.Message) {
select {
case p.sendc <- m:
case <-p.done:
}
}
func (p *peer) Update(urls types.URLs) {
select {
case p.newURLsC <- urls:
case <-p.done:
}
}
func (p *peer) setTerm(term uint64) { p.msgAppReader.updateMsgAppTerm(term) }
func (p *peer) attachOutgoingConn(conn *outgoingConn) {
var ok bool
switch conn.t {
case streamTypeMsgApp, streamTypeMsgAppV2:
ok = p.msgAppWriter.attach(conn)
case streamTypeMessage:
ok = p.writer.attach(conn)
default:
plog.Panicf("unhandled stream type %s", conn.t)
}
if !ok {
conn.Close()
}
}
// Pause pauses the peer. The peer will simply drops all incoming
// messages without retruning an error.
func (p *peer) Pause() {
select {
case p.pausec <- struct{}{}:
case <-p.done:
}
}
// Resume resumes a paused peer.
func (p *peer) Resume() {
select {
case p.resumec <- struct{}{}:
case <-p.done:
}
}
func (p *peer) Stop() {
close(p.stopc)
<-p.done
}
// pick picks a chan for sending the given message. The picked chan and the picked chan
// string name are returned.
func (p *peer) pick(m raftpb.Message) (writec chan<- raftpb.Message, picked string) {
var ok bool
// Considering MsgSnap may have a big size, e.g., 1G, and will block
// stream for a long time, only use one of the N pipelines to send MsgSnap.
if isMsgSnap(m) {
return p.pipeline.msgc, pipelineMsg
} else if writec, ok = p.msgAppWriter.writec(); ok && canUseMsgAppStream(m) {
return writec, streamApp
} else if writec, ok = p.writer.writec(); ok {
return writec, streamMsg
}
return p.pipeline.msgc, pipelineMsg
}
func isMsgSnap(m raftpb.Message) bool { return m.Type == raftpb.MsgSnap }
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。