1 Star 0 Fork 2

who7708/etcd

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
peer.go 8.73 KB
一键复制 编辑 原始数据 按行查看 历史
XiangLi 提交于 2016-06-01 22:12 . rafthttp: rename to to peerID
// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package rafthttp
import (
"sync"
"time"
"github.com/coreos/etcd/etcdserver/stats"
"github.com/coreos/etcd/pkg/types"
"github.com/coreos/etcd/raft"
"github.com/coreos/etcd/raft/raftpb"
"github.com/coreos/etcd/snap"
"golang.org/x/net/context"
)
const (
// ConnReadTimeout and ConnWriteTimeout are the i/o timeout set on each connection rafthttp pkg creates.
// A 5 seconds timeout is good enough for recycling bad connections. Or we have to wait for
// tcp keepalive failing to detect a bad connection, which is at minutes level.
// For long term streaming connections, rafthttp pkg sends application level linkHeartbeatMessage
// to keep the connection alive.
// For short term pipeline connections, the connection MUST be killed to avoid it being
// put back to http pkg connection pool.
ConnReadTimeout = 5 * time.Second
ConnWriteTimeout = 5 * time.Second
recvBufSize = 4096
// maxPendingProposals holds the proposals during one leader election process.
// Generally one leader election takes at most 1 sec. It should have
// 0-2 election conflicts, and each one takes 0.5 sec.
// We assume the number of concurrent proposers is smaller than 4096.
// One client blocks on its proposal for at least 1 sec, so 4096 is enough
// to hold all proposals.
maxPendingProposals = 4096
streamAppV2 = "streamMsgAppV2"
streamMsg = "streamMsg"
pipelineMsg = "pipeline"
sendSnap = "sendMsgSnap"
)
type Peer interface {
// send sends the message to the remote peer. The function is non-blocking
// and has no promise that the message will be received by the remote.
// When it fails to send message out, it will report the status to underlying
// raft.
send(m raftpb.Message)
// sendSnap sends the merged snapshot message to the remote peer. Its behavior
// is similar to send.
sendSnap(m snap.Message)
// update updates the urls of remote peer.
update(urls types.URLs)
// attachOutgoingConn attaches the outgoing connection to the peer for
// stream usage. After the call, the ownership of the outgoing
// connection hands over to the peer. The peer will close the connection
// when it is no longer used.
attachOutgoingConn(conn *outgoingConn)
// activeSince returns the time that the connection with the
// peer becomes active.
activeSince() time.Time
// stop performs any necessary finalization and terminates the peer
// elegantly.
stop()
}
// peer is the representative of a remote raft node. Local raft node sends
// messages to the remote through peer.
// Each peer has two underlying mechanisms to send out a message: stream and
// pipeline.
// A stream is a receiver initialized long-polling connection, which
// is always open to transfer messages. Besides general stream, peer also has
// a optimized stream for sending msgApp since msgApp accounts for large part
// of all messages. Only raft leader uses the optimized stream to send msgApp
// to the remote follower node.
// A pipeline is a series of http clients that send http requests to the remote.
// It is only used when the stream has not been established.
type peer struct {
// id of the remote raft peer node
id types.ID
r Raft
status *peerStatus
picker *urlPicker
msgAppV2Writer *streamWriter
writer *streamWriter
pipeline *pipeline
snapSender *snapshotSender // snapshot sender to send v3 snapshot messages
msgAppV2Reader *streamReader
msgAppReader *streamReader
sendc chan raftpb.Message
recvc chan raftpb.Message
propc chan raftpb.Message
mu sync.Mutex
paused bool
cancel context.CancelFunc // cancel pending works in go routine created by peer.
stopc chan struct{}
}
func startPeer(transport *Transport, urls types.URLs, peerID types.ID, fs *stats.FollowerStats) *peer {
plog.Infof("starting peer %s...", peerID)
defer plog.Infof("started peer %s", peerID)
status := newPeerStatus(peerID)
picker := newURLPicker(urls)
errorc := transport.ErrorC
r := transport.Raft
pipeline := &pipeline{
peerID: peerID,
tr: transport,
picker: picker,
status: status,
followerStats: fs,
raft: r,
errorc: errorc,
}
pipeline.start()
p := &peer{
id: peerID,
r: r,
status: status,
picker: picker,
msgAppV2Writer: startStreamWriter(peerID, status, fs, r),
writer: startStreamWriter(peerID, status, fs, r),
pipeline: pipeline,
snapSender: newSnapshotSender(transport, picker, peerID, status),
sendc: make(chan raftpb.Message),
recvc: make(chan raftpb.Message, recvBufSize),
propc: make(chan raftpb.Message, maxPendingProposals),
stopc: make(chan struct{}),
}
ctx, cancel := context.WithCancel(context.Background())
p.cancel = cancel
go func() {
for {
select {
case mm := <-p.recvc:
if err := r.Process(ctx, mm); err != nil {
plog.Warningf("failed to process raft message (%v)", err)
}
case <-p.stopc:
return
}
}
}()
// r.Process might block for processing proposal when there is no leader.
// Thus propc must be put into a separate routine with recvc to avoid blocking
// processing other raft messages.
go func() {
for {
select {
case mm := <-p.propc:
if err := r.Process(ctx, mm); err != nil {
plog.Warningf("failed to process raft message (%v)", err)
}
case <-p.stopc:
return
}
}
}()
p.msgAppV2Reader = &streamReader{
peerID: peerID,
typ: streamTypeMsgAppV2,
tr: transport,
picker: picker,
status: status,
recvc: p.recvc,
propc: p.propc,
}
p.msgAppReader = &streamReader{
peerID: peerID,
typ: streamTypeMessage,
tr: transport,
picker: picker,
status: status,
recvc: p.recvc,
propc: p.propc,
}
p.msgAppV2Reader.start()
p.msgAppReader.start()
return p
}
func (p *peer) send(m raftpb.Message) {
p.mu.Lock()
paused := p.paused
p.mu.Unlock()
if paused {
return
}
writec, name := p.pick(m)
select {
case writec <- m:
default:
p.r.ReportUnreachable(m.To)
if isMsgSnap(m) {
p.r.ReportSnapshot(m.To, raft.SnapshotFailure)
}
if p.status.isActive() {
plog.MergeWarningf("dropped internal raft message to %s since %s's sending buffer is full (bad/overloaded network)", p.id, name)
}
plog.Debugf("dropped %s to %s since %s's sending buffer is full", m.Type, p.id, name)
}
}
func (p *peer) sendSnap(m snap.Message) {
go p.snapSender.send(m)
}
func (p *peer) update(urls types.URLs) {
p.picker.update(urls)
}
func (p *peer) attachOutgoingConn(conn *outgoingConn) {
var ok bool
switch conn.t {
case streamTypeMsgAppV2:
ok = p.msgAppV2Writer.attach(conn)
case streamTypeMessage:
ok = p.writer.attach(conn)
default:
plog.Panicf("unhandled stream type %s", conn.t)
}
if !ok {
conn.Close()
}
}
func (p *peer) activeSince() time.Time { return p.status.activeSince() }
// Pause pauses the peer. The peer will simply drops all incoming
// messages without returning an error.
func (p *peer) Pause() {
p.mu.Lock()
defer p.mu.Unlock()
p.paused = true
p.msgAppReader.pause()
p.msgAppV2Reader.pause()
}
// Resume resumes a paused peer.
func (p *peer) Resume() {
p.mu.Lock()
defer p.mu.Unlock()
p.paused = false
p.msgAppReader.resume()
p.msgAppV2Reader.resume()
}
func (p *peer) stop() {
plog.Infof("stopping peer %s...", p.id)
defer plog.Infof("stopped peer %s", p.id)
close(p.stopc)
p.cancel()
p.msgAppV2Writer.stop()
p.writer.stop()
p.pipeline.stop()
p.snapSender.stop()
p.msgAppV2Reader.stop()
p.msgAppReader.stop()
}
// pick picks a chan for sending the given message. The picked chan and the picked chan
// string name are returned.
func (p *peer) pick(m raftpb.Message) (writec chan<- raftpb.Message, picked string) {
var ok bool
// Considering MsgSnap may have a big size, e.g., 1G, and will block
// stream for a long time, only use one of the N pipelines to send MsgSnap.
if isMsgSnap(m) {
return p.pipeline.msgc, pipelineMsg
} else if writec, ok = p.msgAppV2Writer.writec(); ok && isMsgApp(m) {
return writec, streamAppV2
} else if writec, ok = p.writer.writec(); ok {
return writec, streamMsg
}
return p.pipeline.msgc, pipelineMsg
}
func isMsgApp(m raftpb.Message) bool { return m.Type == raftpb.MsgApp }
func isMsgSnap(m raftpb.Message) bool { return m.Type == raftpb.MsgSnap }
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/who7708/etcd.git
git@gitee.com:who7708/etcd.git
who7708
etcd
etcd
v3.0.7

搜索帮助