代码拉取完成,页面将自动刷新
// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package raft
import (
"bytes"
"errors"
"fmt"
"math"
"math/rand"
"sort"
"strings"
"sync"
"time"
pb "github.com/coreos/etcd/raft/raftpb"
)
// None is a placeholder node ID used when there is no leader.
const None uint64 = 0
const noLimit = math.MaxUint64
// Possible values for StateType.
const (
StateFollower StateType = iota
StateCandidate
StateLeader
StatePreCandidate
numStates
)
type ReadOnlyOption int
const (
// ReadOnlySafe guarantees the linearizability of the read only request by
// communicating with the quorum. It is the default and suggested option.
ReadOnlySafe ReadOnlyOption = iota
// ReadOnlyLeaseBased ensures linearizability of the read only request by
// relying on the leader lease. It can be affected by clock drift.
// If the clock drift is unbounded, leader might keep the lease longer than it
// should (clock can move backward/pause without any bound). ReadIndex is not safe
// in that case.
ReadOnlyLeaseBased
)
// Possible values for CampaignType
const (
// campaignPreElection represents the first phase of a normal election when
// Config.PreVote is true.
campaignPreElection CampaignType = "CampaignPreElection"
// campaignElection represents a normal (time-based) election (the second phase
// of the election when Config.PreVote is true).
campaignElection CampaignType = "CampaignElection"
// campaignTransfer represents the type of leader transfer
campaignTransfer CampaignType = "CampaignTransfer"
)
// lockedRand is a small wrapper around rand.Rand to provide
// synchronization. Only the methods needed by the code are exposed
// (e.g. Intn).
type lockedRand struct {
mu sync.Mutex
rand *rand.Rand
}
func (r *lockedRand) Intn(n int) int {
r.mu.Lock()
v := r.rand.Intn(n)
r.mu.Unlock()
return v
}
var globalRand = &lockedRand{
rand: rand.New(rand.NewSource(time.Now().UnixNano())),
}
// CampaignType represents the type of campaigning
// the reason we use the type of string instead of uint64
// is because it's simpler to compare and fill in raft entries
type CampaignType string
// StateType represents the role of a node in a cluster.
type StateType uint64
var stmap = [...]string{
"StateFollower",
"StateCandidate",
"StateLeader",
"StatePreCandidate",
}
func (st StateType) String() string {
return stmap[uint64(st)]
}
// Config contains the parameters to start a raft.
type Config struct {
// ID is the identity of the local raft. ID cannot be 0.
ID uint64
// peers contains the IDs of all nodes (including self) in the raft cluster. It
// should only be set when starting a new raft cluster. Restarting raft from
// previous configuration will panic if peers is set. peer is private and only
// used for testing right now.
peers []uint64
// ElectionTick is the number of Node.Tick invocations that must pass between
// elections. That is, if a follower does not receive any message from the
// leader of current term before ElectionTick has elapsed, it will become
// candidate and start an election. ElectionTick must be greater than
// HeartbeatTick. We suggest ElectionTick = 10 * HeartbeatTick to avoid
// unnecessary leader switching.
ElectionTick int
// HeartbeatTick is the number of Node.Tick invocations that must pass between
// heartbeats. That is, a leader sends heartbeat messages to maintain its
// leadership every HeartbeatTick ticks.
HeartbeatTick int
// Storage is the storage for raft. raft generates entries and states to be
// stored in storage. raft reads the persisted entries and states out of
// Storage when it needs. raft reads out the previous state and configuration
// out of storage when restarting.
Storage Storage
// Applied is the last applied index. It should only be set when restarting
// raft. raft will not return entries to the application smaller or equal to
// Applied. If Applied is unset when restarting, raft might return previous
// applied entries. This is a very application dependent configuration.
Applied uint64
// MaxSizePerMsg limits the max size of each append message. Smaller value
// lowers the raft recovery cost(initial probing and message lost during normal
// operation). On the other side, it might affect the throughput during normal
// replication. Note: math.MaxUint64 for unlimited, 0 for at most one entry per
// message.
MaxSizePerMsg uint64
// MaxInflightMsgs limits the max number of in-flight append messages during
// optimistic replication phase. The application transportation layer usually
// has its own sending buffer over TCP/UDP. Setting MaxInflightMsgs to avoid
// overflowing that sending buffer. TODO (xiangli): feedback to application to
// limit the proposal rate?
MaxInflightMsgs int
// CheckQuorum specifies if the leader should check quorum activity. Leader
// steps down when quorum is not active for an electionTimeout.
CheckQuorum bool
// PreVote enables the Pre-Vote algorithm described in raft thesis section
// 9.6. This prevents disruption when a node that has been partitioned away
// rejoins the cluster.
PreVote bool
// ReadOnlyOption specifies how the read only request is processed.
//
// ReadOnlySafe guarantees the linearizability of the read only request by
// communicating with the quorum. It is the default and suggested option.
//
// ReadOnlyLeaseBased ensures linearizability of the read only request by
// relying on the leader lease. It can be affected by clock drift.
// If the clock drift is unbounded, leader might keep the lease longer than it
// should (clock can move backward/pause without any bound). ReadIndex is not safe
// in that case.
ReadOnlyOption ReadOnlyOption
// Logger is the logger used for raft log. For multinode which can host
// multiple raft group, each raft group can have its own logger
Logger Logger
}
func (c *Config) validate() error {
if c.ID == None {
return errors.New("cannot use none as id")
}
if c.HeartbeatTick <= 0 {
return errors.New("heartbeat tick must be greater than 0")
}
if c.ElectionTick <= c.HeartbeatTick {
return errors.New("election tick must be greater than heartbeat tick")
}
if c.Storage == nil {
return errors.New("storage cannot be nil")
}
if c.MaxInflightMsgs <= 0 {
return errors.New("max inflight messages must be greater than 0")
}
if c.Logger == nil {
c.Logger = raftLogger
}
return nil
}
type raft struct {
id uint64
Term uint64
Vote uint64
readStates []ReadState
// the log
raftLog *raftLog
maxInflight int
maxMsgSize uint64
prs map[uint64]*Progress
state StateType
votes map[uint64]bool
msgs []pb.Message
// the leader id
lead uint64
// leadTransferee is id of the leader transfer target when its value is not zero.
// Follow the procedure defined in raft thesis 3.10.
leadTransferee uint64
// New configuration is ignored if there exists unapplied configuration.
pendingConf bool
readOnly *readOnly
// number of ticks since it reached last electionTimeout when it is leader
// or candidate.
// number of ticks since it reached last electionTimeout or received a
// valid message from current leader when it is a follower.
electionElapsed int
// number of ticks since it reached last heartbeatTimeout.
// only leader keeps heartbeatElapsed.
heartbeatElapsed int
checkQuorum bool
preVote bool
heartbeatTimeout int
electionTimeout int
// randomizedElectionTimeout is a random number between
// [electiontimeout, 2 * electiontimeout - 1]. It gets reset
// when raft changes its state to follower or candidate.
randomizedElectionTimeout int
tick func()
step stepFunc
logger Logger
}
func newRaft(c *Config) *raft {
if err := c.validate(); err != nil {
panic(err.Error())
}
raftlog := newLog(c.Storage, c.Logger)
hs, cs, err := c.Storage.InitialState()
if err != nil {
panic(err) // TODO(bdarnell)
}
peers := c.peers
if len(cs.Nodes) > 0 {
if len(peers) > 0 {
// TODO(bdarnell): the peers argument is always nil except in
// tests; the argument should be removed and these tests should be
// updated to specify their nodes through a snapshot.
panic("cannot specify both newRaft(peers) and ConfState.Nodes)")
}
peers = cs.Nodes
}
r := &raft{
id: c.ID,
lead: None,
raftLog: raftlog,
maxMsgSize: c.MaxSizePerMsg,
maxInflight: c.MaxInflightMsgs,
prs: make(map[uint64]*Progress),
electionTimeout: c.ElectionTick,
heartbeatTimeout: c.HeartbeatTick,
logger: c.Logger,
checkQuorum: c.CheckQuorum,
preVote: c.PreVote,
readOnly: newReadOnly(c.ReadOnlyOption),
}
for _, p := range peers {
r.prs[p] = &Progress{Next: 1, ins: newInflights(r.maxInflight)}
}
if !isHardStateEqual(hs, emptyState) {
r.loadState(hs)
}
if c.Applied > 0 {
raftlog.appliedTo(c.Applied)
}
r.becomeFollower(r.Term, None)
var nodesStrs []string
for _, n := range r.nodes() {
nodesStrs = append(nodesStrs, fmt.Sprintf("%x", n))
}
r.logger.Infof("newRaft %x [peers: [%s], term: %d, commit: %d, applied: %d, lastindex: %d, lastterm: %d]",
r.id, strings.Join(nodesStrs, ","), r.Term, r.raftLog.committed, r.raftLog.applied, r.raftLog.lastIndex(), r.raftLog.lastTerm())
return r
}
func (r *raft) hasLeader() bool { return r.lead != None }
func (r *raft) softState() *SoftState { return &SoftState{Lead: r.lead, RaftState: r.state} }
func (r *raft) hardState() pb.HardState {
return pb.HardState{
Term: r.Term,
Vote: r.Vote,
Commit: r.raftLog.committed,
}
}
func (r *raft) quorum() int { return len(r.prs)/2 + 1 }
func (r *raft) nodes() []uint64 {
nodes := make([]uint64, 0, len(r.prs))
for id := range r.prs {
nodes = append(nodes, id)
}
sort.Sort(uint64Slice(nodes))
return nodes
}
// send persists state to stable storage and then sends to its mailbox.
func (r *raft) send(m pb.Message) {
m.From = r.id
if m.Type == pb.MsgVote || m.Type == pb.MsgPreVote {
if m.Term == 0 {
// PreVote RPCs are sent at a term other than our actual term, so the code
// that sends these messages is responsible for setting the term.
panic(fmt.Sprintf("term should be set when sending %s", m.Type))
}
} else {
if m.Term != 0 {
panic(fmt.Sprintf("term should not be set when sending %s (was %d)", m.Type, m.Term))
}
// do not attach term to MsgProp, MsgReadIndex
// proposals are a way to forward to the leader and
// should be treated as local message.
// MsgReadIndex is also forwarded to leader.
if m.Type != pb.MsgProp && m.Type != pb.MsgReadIndex {
m.Term = r.Term
}
}
r.msgs = append(r.msgs, m)
}
// sendAppend sends RPC, with entries to the given peer.
func (r *raft) sendAppend(to uint64) {
pr := r.prs[to]
if pr.IsPaused() {
return
}
m := pb.Message{}
m.To = to
term, errt := r.raftLog.term(pr.Next - 1)
ents, erre := r.raftLog.entries(pr.Next, r.maxMsgSize)
if errt != nil || erre != nil { // send snapshot if we failed to get term or entries
if !pr.RecentActive {
r.logger.Debugf("ignore sending snapshot to %x since it is not recently active", to)
return
}
m.Type = pb.MsgSnap
snapshot, err := r.raftLog.snapshot()
if err != nil {
if err == ErrSnapshotTemporarilyUnavailable {
r.logger.Debugf("%x failed to send snapshot to %x because snapshot is temporarily unavailable", r.id, to)
return
}
panic(err) // TODO(bdarnell)
}
if IsEmptySnap(snapshot) {
panic("need non-empty snapshot")
}
m.Snapshot = snapshot
sindex, sterm := snapshot.Metadata.Index, snapshot.Metadata.Term
r.logger.Debugf("%x [firstindex: %d, commit: %d] sent snapshot[index: %d, term: %d] to %x [%s]",
r.id, r.raftLog.firstIndex(), r.raftLog.committed, sindex, sterm, to, pr)
pr.becomeSnapshot(sindex)
r.logger.Debugf("%x paused sending replication messages to %x [%s]", r.id, to, pr)
} else {
m.Type = pb.MsgApp
m.Index = pr.Next - 1
m.LogTerm = term
m.Entries = ents
m.Commit = r.raftLog.committed
if n := len(m.Entries); n != 0 {
switch pr.State {
// optimistically increase the next when in ProgressStateReplicate
case ProgressStateReplicate:
last := m.Entries[n-1].Index
pr.optimisticUpdate(last)
pr.ins.add(last)
case ProgressStateProbe:
pr.pause()
default:
r.logger.Panicf("%x is sending append in unhandled state %s", r.id, pr.State)
}
}
}
r.send(m)
}
// sendHeartbeat sends an empty MsgApp
func (r *raft) sendHeartbeat(to uint64, ctx []byte) {
// Attach the commit as min(to.matched, r.committed).
// When the leader sends out heartbeat message,
// the receiver(follower) might not be matched with the leader
// or it might not have all the committed entries.
// The leader MUST NOT forward the follower's commit to
// an unmatched index.
commit := min(r.prs[to].Match, r.raftLog.committed)
m := pb.Message{
To: to,
Type: pb.MsgHeartbeat,
Commit: commit,
Context: ctx,
}
r.send(m)
}
// bcastAppend sends RPC, with entries to all peers that are not up-to-date
// according to the progress recorded in r.prs.
func (r *raft) bcastAppend() {
for id := range r.prs {
if id == r.id {
continue
}
r.sendAppend(id)
}
}
// bcastHeartbeat sends RPC, without entries to all the peers.
func (r *raft) bcastHeartbeat() {
lastCtx := r.readOnly.lastPendingRequestCtx()
if len(lastCtx) == 0 {
r.bcastHeartbeatWithCtx(nil)
} else {
r.bcastHeartbeatWithCtx([]byte(lastCtx))
}
}
func (r *raft) bcastHeartbeatWithCtx(ctx []byte) {
for id := range r.prs {
if id == r.id {
continue
}
r.sendHeartbeat(id, ctx)
}
}
// maybeCommit attempts to advance the commit index. Returns true if
// the commit index changed (in which case the caller should call
// r.bcastAppend).
func (r *raft) maybeCommit() bool {
// TODO(bmizerany): optimize.. Currently naive
mis := make(uint64Slice, 0, len(r.prs))
for id := range r.prs {
mis = append(mis, r.prs[id].Match)
}
sort.Sort(sort.Reverse(mis))
mci := mis[r.quorum()-1]
return r.raftLog.maybeCommit(mci, r.Term)
}
func (r *raft) reset(term uint64) {
if r.Term != term {
r.Term = term
r.Vote = None
}
r.lead = None
r.electionElapsed = 0
r.heartbeatElapsed = 0
r.resetRandomizedElectionTimeout()
r.abortLeaderTransfer()
r.votes = make(map[uint64]bool)
for id := range r.prs {
r.prs[id] = &Progress{Next: r.raftLog.lastIndex() + 1, ins: newInflights(r.maxInflight)}
if id == r.id {
r.prs[id].Match = r.raftLog.lastIndex()
}
}
r.pendingConf = false
r.readOnly = newReadOnly(r.readOnly.option)
}
func (r *raft) appendEntry(es ...pb.Entry) {
li := r.raftLog.lastIndex()
for i := range es {
es[i].Term = r.Term
es[i].Index = li + 1 + uint64(i)
}
r.raftLog.append(es...)
r.prs[r.id].maybeUpdate(r.raftLog.lastIndex())
// Regardless of maybeCommit's return, our caller will call bcastAppend.
r.maybeCommit()
}
// tickElection is run by followers and candidates after r.electionTimeout.
func (r *raft) tickElection() {
r.electionElapsed++
if r.promotable() && r.pastElectionTimeout() {
r.electionElapsed = 0
r.Step(pb.Message{From: r.id, Type: pb.MsgHup})
}
}
// tickHeartbeat is run by leaders to send a MsgBeat after r.heartbeatTimeout.
func (r *raft) tickHeartbeat() {
r.heartbeatElapsed++
r.electionElapsed++
if r.electionElapsed >= r.electionTimeout {
r.electionElapsed = 0
if r.checkQuorum {
r.Step(pb.Message{From: r.id, Type: pb.MsgCheckQuorum})
}
// If current leader cannot transfer leadership in electionTimeout, it becomes leader again.
if r.state == StateLeader && r.leadTransferee != None {
r.abortLeaderTransfer()
}
}
if r.state != StateLeader {
return
}
if r.heartbeatElapsed >= r.heartbeatTimeout {
r.heartbeatElapsed = 0
r.Step(pb.Message{From: r.id, Type: pb.MsgBeat})
}
}
func (r *raft) becomeFollower(term uint64, lead uint64) {
r.step = stepFollower
r.reset(term)
r.tick = r.tickElection
r.lead = lead
r.state = StateFollower
r.logger.Infof("%x became follower at term %d", r.id, r.Term)
}
func (r *raft) becomeCandidate() {
// TODO(xiangli) remove the panic when the raft implementation is stable
if r.state == StateLeader {
panic("invalid transition [leader -> candidate]")
}
r.step = stepCandidate
r.reset(r.Term + 1)
r.tick = r.tickElection
r.Vote = r.id
r.state = StateCandidate
r.logger.Infof("%x became candidate at term %d", r.id, r.Term)
}
func (r *raft) becomePreCandidate() {
// TODO(xiangli) remove the panic when the raft implementation is stable
if r.state == StateLeader {
panic("invalid transition [leader -> pre-candidate]")
}
// Becoming a pre-candidate changes our step functions and state,
// but doesn't change anything else. In particular it does not increase
// r.Term or change r.Vote.
r.step = stepCandidate
r.tick = r.tickElection
r.state = StatePreCandidate
r.logger.Infof("%x became pre-candidate at term %d", r.id, r.Term)
}
func (r *raft) becomeLeader() {
// TODO(xiangli) remove the panic when the raft implementation is stable
if r.state == StateFollower {
panic("invalid transition [follower -> leader]")
}
r.step = stepLeader
r.reset(r.Term)
r.tick = r.tickHeartbeat
r.lead = r.id
r.state = StateLeader
ents, err := r.raftLog.entries(r.raftLog.committed+1, noLimit)
if err != nil {
r.logger.Panicf("unexpected error getting uncommitted entries (%v)", err)
}
nconf := numOfPendingConf(ents)
if nconf > 1 {
panic("unexpected multiple uncommitted config entry")
}
if nconf == 1 {
r.pendingConf = true
}
r.appendEntry(pb.Entry{Data: nil})
r.logger.Infof("%x became leader at term %d", r.id, r.Term)
}
func (r *raft) campaign(t CampaignType) {
var term uint64
var voteMsg pb.MessageType
if t == campaignPreElection {
r.becomePreCandidate()
voteMsg = pb.MsgPreVote
// PreVote RPCs are sent for the next term before we've incremented r.Term.
term = r.Term + 1
} else {
r.becomeCandidate()
voteMsg = pb.MsgVote
term = r.Term
}
if r.quorum() == r.poll(r.id, voteRespMsgType(voteMsg), true) {
// We won the election after voting for ourselves (which must mean that
// this is a single-node cluster). Advance to the next state.
if t == campaignPreElection {
r.campaign(campaignElection)
} else {
r.becomeLeader()
}
return
}
for id := range r.prs {
if id == r.id {
continue
}
r.logger.Infof("%x [logterm: %d, index: %d] sent %s request to %x at term %d",
r.id, r.raftLog.lastTerm(), r.raftLog.lastIndex(), voteMsg, id, r.Term)
var ctx []byte
if t == campaignTransfer {
ctx = []byte(t)
}
r.send(pb.Message{Term: term, To: id, Type: voteMsg, Index: r.raftLog.lastIndex(), LogTerm: r.raftLog.lastTerm(), Context: ctx})
}
}
func (r *raft) poll(id uint64, t pb.MessageType, v bool) (granted int) {
if v {
r.logger.Infof("%x received %s from %x at term %d", r.id, t, id, r.Term)
} else {
r.logger.Infof("%x received %s rejection from %x at term %d", r.id, t, id, r.Term)
}
if _, ok := r.votes[id]; !ok {
r.votes[id] = v
}
for _, vv := range r.votes {
if vv {
granted++
}
}
return granted
}
func (r *raft) Step(m pb.Message) error {
// Handle the message term, which may result in our stepping down to a follower.
switch {
case m.Term == 0:
// local message
case m.Term > r.Term:
lead := m.From
if m.Type == pb.MsgVote || m.Type == pb.MsgPreVote {
force := bytes.Equal(m.Context, []byte(campaignTransfer))
inLease := r.checkQuorum && r.lead != None && r.electionElapsed < r.electionTimeout
if !force && inLease {
// If a server receives a RequestVote request within the minimum election timeout
// of hearing from a current leader, it does not update its term or grant its vote
r.logger.Infof("%x [logterm: %d, index: %d, vote: %x] ignored %s from %x [logterm: %d, index: %d] at term %d: lease is not expired (remaining ticks: %d)",
r.id, r.raftLog.lastTerm(), r.raftLog.lastIndex(), r.Vote, m.Type, m.From, m.LogTerm, m.Index, r.Term, r.electionTimeout-r.electionElapsed)
return nil
}
lead = None
}
switch {
case m.Type == pb.MsgPreVote:
// Never change our term in response to a PreVote
case m.Type == pb.MsgPreVoteResp && !m.Reject:
// We send pre-vote requests with a term in our future. If the
// pre-vote is granted, we will increment our term when we get a
// quorum. If it is not, the term comes from the node that
// rejected our vote so we should become a follower at the new
// term.
default:
r.logger.Infof("%x [term: %d] received a %s message with higher term from %x [term: %d]",
r.id, r.Term, m.Type, m.From, m.Term)
r.becomeFollower(m.Term, lead)
}
case m.Term < r.Term:
if r.checkQuorum && (m.Type == pb.MsgHeartbeat || m.Type == pb.MsgApp) {
// We have received messages from a leader at a lower term. It is possible
// that these messages were simply delayed in the network, but this could
// also mean that this node has advanced its term number during a network
// partition, and it is now unable to either win an election or to rejoin
// the majority on the old term. If checkQuorum is false, this will be
// handled by incrementing term numbers in response to MsgVote with a
// higher term, but if checkQuorum is true we may not advance the term on
// MsgVote and must generate other messages to advance the term. The net
// result of these two features is to minimize the disruption caused by
// nodes that have been removed from the cluster's configuration: a
// removed node will send MsgVotes (or MsgPreVotes) which will be ignored,
// but it will not receive MsgApp or MsgHeartbeat, so it will not create
// disruptive term increases
r.send(pb.Message{To: m.From, Type: pb.MsgAppResp})
} else {
// ignore other cases
r.logger.Infof("%x [term: %d] ignored a %s message with lower term from %x [term: %d]",
r.id, r.Term, m.Type, m.From, m.Term)
}
return nil
}
switch m.Type {
case pb.MsgHup:
if r.state != StateLeader {
ents, err := r.raftLog.slice(r.raftLog.applied+1, r.raftLog.committed+1, noLimit)
if err != nil {
r.logger.Panicf("unexpected error getting unapplied entries (%v)", err)
}
if n := numOfPendingConf(ents); n != 0 && r.raftLog.committed > r.raftLog.applied {
r.logger.Warningf("%x cannot campaign at term %d since there are still %d pending configuration changes to apply", r.id, r.Term, n)
return nil
}
r.logger.Infof("%x is starting a new election at term %d", r.id, r.Term)
if r.preVote {
r.campaign(campaignPreElection)
} else {
r.campaign(campaignElection)
}
} else {
r.logger.Debugf("%x ignoring MsgHup because already leader", r.id)
}
case pb.MsgVote, pb.MsgPreVote:
// The m.Term > r.Term clause is for MsgPreVote. For MsgVote m.Term should
// always equal r.Term.
if (r.Vote == None || m.Term > r.Term || r.Vote == m.From) && r.raftLog.isUpToDate(m.Index, m.LogTerm) {
r.logger.Infof("%x [logterm: %d, index: %d, vote: %x] cast %s for %x [logterm: %d, index: %d] at term %d",
r.id, r.raftLog.lastTerm(), r.raftLog.lastIndex(), r.Vote, m.Type, m.From, m.LogTerm, m.Index, r.Term)
r.send(pb.Message{To: m.From, Type: voteRespMsgType(m.Type)})
if m.Type == pb.MsgVote {
// Only record real votes.
r.electionElapsed = 0
r.Vote = m.From
}
} else {
r.logger.Infof("%x [logterm: %d, index: %d, vote: %x] rejected %s from %x [logterm: %d, index: %d] at term %d",
r.id, r.raftLog.lastTerm(), r.raftLog.lastIndex(), r.Vote, m.Type, m.From, m.LogTerm, m.Index, r.Term)
r.send(pb.Message{To: m.From, Type: voteRespMsgType(m.Type), Reject: true})
}
default:
r.step(r, m)
}
return nil
}
type stepFunc func(r *raft, m pb.Message)
func stepLeader(r *raft, m pb.Message) {
// These message types do not require any progress for m.From.
switch m.Type {
case pb.MsgBeat:
r.bcastHeartbeat()
return
case pb.MsgCheckQuorum:
if !r.checkQuorumActive() {
r.logger.Warningf("%x stepped down to follower since quorum is not active", r.id)
r.becomeFollower(r.Term, None)
}
return
case pb.MsgProp:
if len(m.Entries) == 0 {
r.logger.Panicf("%x stepped empty MsgProp", r.id)
}
if _, ok := r.prs[r.id]; !ok {
// If we are not currently a member of the range (i.e. this node
// was removed from the configuration while serving as leader),
// drop any new proposals.
return
}
if r.leadTransferee != None {
r.logger.Debugf("%x [term %d] transfer leadership to %x is in progress; dropping proposal", r.id, r.Term, r.leadTransferee)
return
}
for i, e := range m.Entries {
if e.Type == pb.EntryConfChange {
if r.pendingConf {
r.logger.Infof("propose conf %s ignored since pending unapplied configuration", e.String())
m.Entries[i] = pb.Entry{Type: pb.EntryNormal}
}
r.pendingConf = true
}
}
r.appendEntry(m.Entries...)
r.bcastAppend()
return
case pb.MsgReadIndex:
if r.quorum() > 1 {
if r.raftLog.zeroTermOnErrCompacted(r.raftLog.term(r.raftLog.committed)) != r.Term {
// Reject read only request when this leader has not committed any log entry at its term.
return
}
// thinking: use an interally defined context instead of the user given context.
// We can express this in terms of the term and index instead of a user-supplied value.
// This would allow multiple reads to piggyback on the same message.
switch r.readOnly.option {
case ReadOnlySafe:
r.readOnly.addRequest(r.raftLog.committed, m)
r.bcastHeartbeatWithCtx(m.Entries[0].Data)
case ReadOnlyLeaseBased:
var ri uint64
if r.checkQuorum {
ri = r.raftLog.committed
}
if m.From == None || m.From == r.id { // from local member
r.readStates = append(r.readStates, ReadState{Index: r.raftLog.committed, RequestCtx: m.Entries[0].Data})
} else {
r.send(pb.Message{To: m.From, Type: pb.MsgReadIndexResp, Index: ri, Entries: m.Entries})
}
}
} else {
r.readStates = append(r.readStates, ReadState{Index: r.raftLog.committed, RequestCtx: m.Entries[0].Data})
}
return
}
// All other message types require a progress for m.From (pr).
pr, prOk := r.prs[m.From]
if !prOk {
r.logger.Debugf("%x no progress available for %x", r.id, m.From)
return
}
switch m.Type {
case pb.MsgAppResp:
pr.RecentActive = true
if m.Reject {
r.logger.Debugf("%x received msgApp rejection(lastindex: %d) from %x for index %d",
r.id, m.RejectHint, m.From, m.Index)
if pr.maybeDecrTo(m.Index, m.RejectHint) {
r.logger.Debugf("%x decreased progress of %x to [%s]", r.id, m.From, pr)
if pr.State == ProgressStateReplicate {
pr.becomeProbe()
}
r.sendAppend(m.From)
}
} else {
oldPaused := pr.IsPaused()
if pr.maybeUpdate(m.Index) {
switch {
case pr.State == ProgressStateProbe:
pr.becomeReplicate()
case pr.State == ProgressStateSnapshot && pr.needSnapshotAbort():
r.logger.Debugf("%x snapshot aborted, resumed sending replication messages to %x [%s]", r.id, m.From, pr)
pr.becomeProbe()
case pr.State == ProgressStateReplicate:
pr.ins.freeTo(m.Index)
}
if r.maybeCommit() {
r.bcastAppend()
} else if oldPaused {
// update() reset the wait state on this node. If we had delayed sending
// an update before, send it now.
r.sendAppend(m.From)
}
// Transfer leadership is in progress.
if m.From == r.leadTransferee && pr.Match == r.raftLog.lastIndex() {
r.logger.Infof("%x sent MsgTimeoutNow to %x after received MsgAppResp", r.id, m.From)
r.sendTimeoutNow(m.From)
}
}
}
case pb.MsgHeartbeatResp:
pr.RecentActive = true
pr.resume()
// free one slot for the full inflights window to allow progress.
if pr.State == ProgressStateReplicate && pr.ins.full() {
pr.ins.freeFirstOne()
}
if pr.Match < r.raftLog.lastIndex() {
r.sendAppend(m.From)
}
if r.readOnly.option != ReadOnlySafe || len(m.Context) == 0 {
return
}
ackCount := r.readOnly.recvAck(m)
if ackCount < r.quorum() {
return
}
rss := r.readOnly.advance(m)
for _, rs := range rss {
req := rs.req
if req.From == None || req.From == r.id { // from local member
r.readStates = append(r.readStates, ReadState{Index: rs.index, RequestCtx: req.Entries[0].Data})
} else {
r.send(pb.Message{To: req.From, Type: pb.MsgReadIndexResp, Index: rs.index, Entries: req.Entries})
}
}
case pb.MsgSnapStatus:
if pr.State != ProgressStateSnapshot {
return
}
if !m.Reject {
pr.becomeProbe()
r.logger.Debugf("%x snapshot succeeded, resumed sending replication messages to %x [%s]", r.id, m.From, pr)
} else {
pr.snapshotFailure()
pr.becomeProbe()
r.logger.Debugf("%x snapshot failed, resumed sending replication messages to %x [%s]", r.id, m.From, pr)
}
// If snapshot finish, wait for the msgAppResp from the remote node before sending
// out the next msgApp.
// If snapshot failure, wait for a heartbeat interval before next try
pr.pause()
case pb.MsgUnreachable:
// During optimistic replication, if the remote becomes unreachable,
// there is huge probability that a MsgApp is lost.
if pr.State == ProgressStateReplicate {
pr.becomeProbe()
}
r.logger.Debugf("%x failed to send message to %x because it is unreachable [%s]", r.id, m.From, pr)
case pb.MsgTransferLeader:
leadTransferee := m.From
lastLeadTransferee := r.leadTransferee
if lastLeadTransferee != None {
if lastLeadTransferee == leadTransferee {
r.logger.Infof("%x [term %d] transfer leadership to %x is in progress, ignores request to same node %x",
r.id, r.Term, leadTransferee, leadTransferee)
return
}
r.abortLeaderTransfer()
r.logger.Infof("%x [term %d] abort previous transferring leadership to %x", r.id, r.Term, lastLeadTransferee)
}
if leadTransferee == r.id {
r.logger.Debugf("%x is already leader. Ignored transferring leadership to self", r.id)
return
}
// Transfer leadership to third party.
r.logger.Infof("%x [term %d] starts to transfer leadership to %x", r.id, r.Term, leadTransferee)
// Transfer leadership should be finished in one electionTimeout, so reset r.electionElapsed.
r.electionElapsed = 0
r.leadTransferee = leadTransferee
if pr.Match == r.raftLog.lastIndex() {
r.sendTimeoutNow(leadTransferee)
r.logger.Infof("%x sends MsgTimeoutNow to %x immediately as %x already has up-to-date log", r.id, leadTransferee, leadTransferee)
} else {
r.sendAppend(leadTransferee)
}
}
}
// stepCandidate is shared by StateCandidate and StatePreCandidate; the difference is
// whether they respond to MsgVoteResp or MsgPreVoteResp.
func stepCandidate(r *raft, m pb.Message) {
// Only handle vote responses corresponding to our candidacy (while in
// StateCandidate, we may get stale MsgPreVoteResp messages in this term from
// our pre-candidate state).
var myVoteRespType pb.MessageType
if r.state == StatePreCandidate {
myVoteRespType = pb.MsgPreVoteResp
} else {
myVoteRespType = pb.MsgVoteResp
}
switch m.Type {
case pb.MsgProp:
r.logger.Infof("%x no leader at term %d; dropping proposal", r.id, r.Term)
return
case pb.MsgApp:
r.becomeFollower(r.Term, m.From)
r.handleAppendEntries(m)
case pb.MsgHeartbeat:
r.becomeFollower(r.Term, m.From)
r.handleHeartbeat(m)
case pb.MsgSnap:
r.becomeFollower(m.Term, m.From)
r.handleSnapshot(m)
case myVoteRespType:
gr := r.poll(m.From, m.Type, !m.Reject)
r.logger.Infof("%x [quorum:%d] has received %d %s votes and %d vote rejections", r.id, r.quorum(), gr, m.Type, len(r.votes)-gr)
switch r.quorum() {
case gr:
if r.state == StatePreCandidate {
r.campaign(campaignElection)
} else {
r.becomeLeader()
r.bcastAppend()
}
case len(r.votes) - gr:
r.becomeFollower(r.Term, None)
}
case pb.MsgTimeoutNow:
r.logger.Debugf("%x [term %d state %v] ignored MsgTimeoutNow from %x", r.id, r.Term, r.state, m.From)
}
}
func stepFollower(r *raft, m pb.Message) {
switch m.Type {
case pb.MsgProp:
if r.lead == None {
r.logger.Infof("%x no leader at term %d; dropping proposal", r.id, r.Term)
return
}
m.To = r.lead
r.send(m)
case pb.MsgApp:
r.electionElapsed = 0
r.lead = m.From
r.handleAppendEntries(m)
case pb.MsgHeartbeat:
r.electionElapsed = 0
r.lead = m.From
r.handleHeartbeat(m)
case pb.MsgSnap:
r.electionElapsed = 0
r.lead = m.From
r.handleSnapshot(m)
case pb.MsgTransferLeader:
if r.lead == None {
r.logger.Infof("%x no leader at term %d; dropping leader transfer msg", r.id, r.Term)
return
}
m.To = r.lead
r.send(m)
case pb.MsgTimeoutNow:
if r.promotable() {
r.logger.Infof("%x [term %d] received MsgTimeoutNow from %x and starts an election to get leadership.", r.id, r.Term, m.From)
// Leadership transfers never use pre-vote even if r.preVote is true; we
// know we are not recovering from a partition so there is no need for the
// extra round trip.
r.campaign(campaignTransfer)
} else {
r.logger.Infof("%x received MsgTimeoutNow from %x but is not promotable", r.id, m.From)
}
case pb.MsgReadIndex:
if r.lead == None {
r.logger.Infof("%x no leader at term %d; dropping index reading msg", r.id, r.Term)
return
}
m.To = r.lead
r.send(m)
case pb.MsgReadIndexResp:
if len(m.Entries) != 1 {
r.logger.Errorf("%x invalid format of MsgReadIndexResp from %x, entries count: %d", r.id, m.From, len(m.Entries))
return
}
r.readStates = append(r.readStates, ReadState{Index: m.Index, RequestCtx: m.Entries[0].Data})
}
}
func (r *raft) handleAppendEntries(m pb.Message) {
if m.Index < r.raftLog.committed {
r.send(pb.Message{To: m.From, Type: pb.MsgAppResp, Index: r.raftLog.committed})
return
}
if mlastIndex, ok := r.raftLog.maybeAppend(m.Index, m.LogTerm, m.Commit, m.Entries...); ok {
r.send(pb.Message{To: m.From, Type: pb.MsgAppResp, Index: mlastIndex})
} else {
r.logger.Debugf("%x [logterm: %d, index: %d] rejected msgApp [logterm: %d, index: %d] from %x",
r.id, r.raftLog.zeroTermOnErrCompacted(r.raftLog.term(m.Index)), m.Index, m.LogTerm, m.Index, m.From)
r.send(pb.Message{To: m.From, Type: pb.MsgAppResp, Index: m.Index, Reject: true, RejectHint: r.raftLog.lastIndex()})
}
}
func (r *raft) handleHeartbeat(m pb.Message) {
r.raftLog.commitTo(m.Commit)
r.send(pb.Message{To: m.From, Type: pb.MsgHeartbeatResp, Context: m.Context})
}
func (r *raft) handleSnapshot(m pb.Message) {
sindex, sterm := m.Snapshot.Metadata.Index, m.Snapshot.Metadata.Term
if r.restore(m.Snapshot) {
r.logger.Infof("%x [commit: %d] restored snapshot [index: %d, term: %d]",
r.id, r.raftLog.committed, sindex, sterm)
r.send(pb.Message{To: m.From, Type: pb.MsgAppResp, Index: r.raftLog.lastIndex()})
} else {
r.logger.Infof("%x [commit: %d] ignored snapshot [index: %d, term: %d]",
r.id, r.raftLog.committed, sindex, sterm)
r.send(pb.Message{To: m.From, Type: pb.MsgAppResp, Index: r.raftLog.committed})
}
}
// restore recovers the state machine from a snapshot. It restores the log and the
// configuration of state machine.
func (r *raft) restore(s pb.Snapshot) bool {
if s.Metadata.Index <= r.raftLog.committed {
return false
}
if r.raftLog.matchTerm(s.Metadata.Index, s.Metadata.Term) {
r.logger.Infof("%x [commit: %d, lastindex: %d, lastterm: %d] fast-forwarded commit to snapshot [index: %d, term: %d]",
r.id, r.raftLog.committed, r.raftLog.lastIndex(), r.raftLog.lastTerm(), s.Metadata.Index, s.Metadata.Term)
r.raftLog.commitTo(s.Metadata.Index)
return false
}
r.logger.Infof("%x [commit: %d, lastindex: %d, lastterm: %d] starts to restore snapshot [index: %d, term: %d]",
r.id, r.raftLog.committed, r.raftLog.lastIndex(), r.raftLog.lastTerm(), s.Metadata.Index, s.Metadata.Term)
r.raftLog.restore(s)
r.prs = make(map[uint64]*Progress)
for _, n := range s.Metadata.ConfState.Nodes {
match, next := uint64(0), r.raftLog.lastIndex()+1
if n == r.id {
match = next - 1
}
r.setProgress(n, match, next)
r.logger.Infof("%x restored progress of %x [%s]", r.id, n, r.prs[n])
}
return true
}
// promotable indicates whether state machine can be promoted to leader,
// which is true when its own id is in progress list.
func (r *raft) promotable() bool {
_, ok := r.prs[r.id]
return ok
}
func (r *raft) addNode(id uint64) {
r.pendingConf = false
if _, ok := r.prs[id]; ok {
// Ignore any redundant addNode calls (which can happen because the
// initial bootstrapping entries are applied twice).
return
}
r.setProgress(id, 0, r.raftLog.lastIndex()+1)
// When a node is first added, we should mark it as recently active.
// Otherwise, CheckQuorum may cause us to step down if it is invoked
// before the added node has a chance to communicate with us.
r.prs[id].RecentActive = true
}
func (r *raft) removeNode(id uint64) {
r.delProgress(id)
r.pendingConf = false
// do not try to commit or abort transferring if there is no nodes in the cluster.
if len(r.prs) == 0 {
return
}
// The quorum size is now smaller, so see if any pending entries can
// be committed.
if r.maybeCommit() {
r.bcastAppend()
}
// If the removed node is the leadTransferee, then abort the leadership transferring.
if r.state == StateLeader && r.leadTransferee == id {
r.abortLeaderTransfer()
}
}
func (r *raft) resetPendingConf() { r.pendingConf = false }
func (r *raft) setProgress(id, match, next uint64) {
r.prs[id] = &Progress{Next: next, Match: match, ins: newInflights(r.maxInflight)}
}
func (r *raft) delProgress(id uint64) {
delete(r.prs, id)
}
func (r *raft) loadState(state pb.HardState) {
if state.Commit < r.raftLog.committed || state.Commit > r.raftLog.lastIndex() {
r.logger.Panicf("%x state.commit %d is out of range [%d, %d]", r.id, state.Commit, r.raftLog.committed, r.raftLog.lastIndex())
}
r.raftLog.committed = state.Commit
r.Term = state.Term
r.Vote = state.Vote
}
// pastElectionTimeout returns true iff r.electionElapsed is greater
// than or equal to the randomized election timeout in
// [electiontimeout, 2 * electiontimeout - 1].
func (r *raft) pastElectionTimeout() bool {
return r.electionElapsed >= r.randomizedElectionTimeout
}
func (r *raft) resetRandomizedElectionTimeout() {
r.randomizedElectionTimeout = r.electionTimeout + globalRand.Intn(r.electionTimeout)
}
// checkQuorumActive returns true if the quorum is active from
// the view of the local raft state machine. Otherwise, it returns
// false.
// checkQuorumActive also resets all RecentActive to false.
func (r *raft) checkQuorumActive() bool {
var act int
for id := range r.prs {
if id == r.id { // self is always active
act++
continue
}
if r.prs[id].RecentActive {
act++
}
r.prs[id].RecentActive = false
}
return act >= r.quorum()
}
func (r *raft) sendTimeoutNow(to uint64) {
r.send(pb.Message{To: to, Type: pb.MsgTimeoutNow})
}
func (r *raft) abortLeaderTransfer() {
r.leadTransferee = None
}
func numOfPendingConf(ents []pb.Entry) int {
n := 0
for i := range ents {
if ents[i].Type == pb.EntryConfChange {
n++
}
}
return n
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。