1 Star 1 Fork 1

wxs1129/EfficientDet.Pytorch

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
demo.py 7.00 KB
一键复制 编辑 原始数据 按行查看 历史
import torch
import cv2
from PIL import Image
import matplotlib.pyplot as plt
from models import EfficientDet
from torchvision import transforms
import numpy as np
import skimage
from datasets import get_augumentation, VOC_CLASSES
from timeit import default_timer as timer
import argparse
import copy
from utils import vis_bbox, EFFICIENTDET
parser = argparse.ArgumentParser(description='EfficientDet')
parser.add_argument('-n', '--network', default='efficientdet-d0',
help='efficientdet-[d0, d1, ..]')
parser.add_argument('-s', '--score', default=True,
action="store_true", help='Show score')
parser.add_argument('-t', '--threshold', default=0.6,
type=float, help='Visualization threshold')
parser.add_argument('-it', '--iou_threshold', default=0.6,
type=float, help='Visualization threshold')
parser.add_argument('-w', '--weight', default='./weights/voc0712.pth',
type=str, help='Weight model path')
parser.add_argument('-c', '--cam',
action="store_true", help='Use camera')
parser.add_argument('-f', '--file_name', default='pic.jpg',
help='Image path')
parser.add_argument('--num_class', default=21, type=int,
help='Number of class used in model')
args = parser.parse_args()
class Detect(object):
"""
dir_name: Folder or image_file
"""
def __init__(self, weights, num_class=21, network='efficientdet-d0', size_image=(512, 512)):
super(Detect, self).__init__()
self.weights = weights
self.size_image = size_image
self.device = torch.device(
"cuda:0" if torch.cuda.is_available() else 'cpu')
self.transform = get_augumentation(phase='test')
if(self.weights is not None):
print('Load pretrained Model')
checkpoint = torch.load(
self.weights, map_location=lambda storage, loc: storage)
params = checkpoint['parser']
num_class = params.num_class
network = params.network
self.model = EfficientDet(num_classes=num_class,
network=network,
W_bifpn=EFFICIENTDET[network]['W_bifpn'],
D_bifpn=EFFICIENTDET[network]['D_bifpn'],
D_class=EFFICIENTDET[network]['D_class'],
is_training=False
)
if(self.weights is not None):
state_dict = checkpoint['state_dict']
self.model.load_state_dict(state_dict)
if torch.cuda.is_available():
self.model = self.model.cuda()
self.model.eval()
def process(self, file_name=None, img=None, show=False):
if file_name is not None:
img = cv2.imread(file_name)
origin_img = copy.deepcopy(img)
augmentation = self.transform(image=img)
img = augmentation['image']
img = img.to(self.device)
img = img.unsqueeze(0)
with torch.no_grad():
scores, classification, transformed_anchors = self.model(img)
bboxes = list()
labels = list()
bbox_scores = list()
colors = list()
for j in range(scores.shape[0]):
bbox = transformed_anchors[[j], :][0].data.cpu().numpy()
x1 = int(bbox[0]*origin_img.shape[1]/self.size_image[1])
y1 = int(bbox[1]*origin_img.shape[0]/self.size_image[0])
x2 = int(bbox[2]*origin_img.shape[1]/self.size_image[1])
y2 = int(bbox[3]*origin_img.shape[0]/self.size_image[0])
bboxes.append([x1, y1, x2, y2])
label_name = VOC_CLASSES[int(classification[[j]])]
labels.append(label_name)
if(args.cam):
cv2.rectangle(origin_img, (x1, y1),
(x2, y2), (179, 255, 179), 2, 1)
if args.score:
score = np.around(
scores[[j]].cpu().numpy(), decimals=2) * 100
if(args.cam):
labelSize, baseLine = cv2.getTextSize('{} {}'.format(
label_name, int(score)), cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2)
cv2.rectangle(
origin_img, (x1, y1-labelSize[1]), (x1+labelSize[0], y1+baseLine), (223, 128, 255), cv2.FILLED)
cv2.putText(
origin_img, '{} {}'.format(label_name, int(score)),
(x1, y1), cv2.FONT_HERSHEY_SIMPLEX,
0.8, (0, 0, 0), 2
)
bbox_scores.append(int(score))
else:
if(args.cam):
labelSize, baseLine = cv2.getTextSize('{}'.format(
label_name), cv2.FONT_HERSHEY_SIMPLEX, 0.8, 2)
cv2.rectangle(
origin_img, (x1, y1-labelSize[1]), (x1+labelSize[0], y1+baseLine), (0, 102, 255), cv2.FILLED)
cv2.putText(
origin_img, '{} {}'.format(label_name, int(score)),
(x1, y1), cv2.FONT_HERSHEY_SIMPLEX,
0.8, (0, 0, 0), 2
)
if show:
fig, ax = vis_bbox(img=origin_img, bbox=bboxes,
label=labels, score=bbox_scores)
fig.savefig('./docs/demo.png')
plt.show()
else:
return origin_img
def camera(self):
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Unable to open camera")
exit(-1)
count_tfps = 1
accum_time = 0
curr_fps = 0
fps = "FPS: ??"
prev_time = timer()
while True:
res, img = cap.read()
curr_time = timer()
exec_time = curr_time - prev_time
prev_time = curr_time
accum_time = accum_time + exec_time
curr_fps = curr_fps + 1
if accum_time > 1:
accum_time = accum_time - 1
fps = curr_fps
curr_fps = 0
if res:
show_image = self.process(img=img)
cv2.putText(
show_image, "FPS: " + str(fps), (10, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (204, 51, 51), 2
)
cv2.imshow("Detection", show_image)
k = cv2.waitKey(1)
if k == 27:
break
else:
print("Unable to read image")
exit(-1)
count_tfps += 1
cap.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
detect = Detect(weights=args.weight)
print('cam: ', args.cam)
if args.cam:
detect.camera()
else:
detect.process(file_name=args.file_name, show=True)
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/wxs1129/EfficientDet.Pytorch.git
git@gitee.com:wxs1129/EfficientDet.Pytorch.git
wxs1129
EfficientDet.Pytorch
EfficientDet.Pytorch
master

搜索帮助