代码拉取完成,页面将自动刷新
# %%
import RSA_module
bit_length = int(input("Enter bit_length: "))
public, private = RSA_module.generate_keypair(2 ** bit_length)
# %% md
## RSA Encryption
# %%
msg = input("\nWrite message: ")
encrypted_msg, encryption_obj = RSA_module.encrypt(msg, public)
print("\nEncrypted message: " + encrypted_msg)
# %% md
## RSA Decryption
# %%
decrypted_msg = RSA_module.decrypt(encryption_obj, private)
print("\nDecrypted message using RSA Algorithm: " + decrypted_msg)
# %% md
## Shor's Quantum Algorithm
# %%
from math import gcd, log
from random import randint
import numpy as np
from qiskit import *
qasm_sim = qiskit.Aer.get_backend('qasm_simulator')
# %%
def period(a, N):
available_qubits = 15
r = -1
if N >= 2 ** available_qubits:
print(str(N) + ' is too big for IBMQX')
qr = QuantumRegister(available_qubits)
cr = ClassicalRegister(available_qubits)
qc = QuantumCircuit(qr, cr)
x0 = randint(1, N - 1)
x_binary = np.zeros(available_qubits, dtype=bool)
for i in range(1, available_qubits + 1):
bit_state = (N % (2 ** i) != 0)
if bit_state:
N -= 2 ** (i - 1)
x_binary[available_qubits - i] = bit_state
for i in range(0, available_qubits):
if x_binary[available_qubits - i - 1]:
qc.x(qr[i])
x = x0
while np.logical_or(x != x0, r <= 0):
r += 1
qc.measure(qr, cr)
for i in range(0, 3):
qc.x(qr[i])
qc.cx(qr[2], qr[1])
qc.cx(qr[1], qr[2])
qc.cx(qr[2], qr[1])
qc.cx(qr[1], qr[0])
qc.cx(qr[0], qr[1])
qc.cx(qr[1], qr[0])
qc.cx(qr[3], qr[0])
qc.cx(qr[0], qr[1])
qc.cx(qr[1], qr[0])
result = execute(qc, backend=qasm_sim, shots=1024).result()
counts = result.get_counts()
# print(qc)
results = [[], []]
for key, value in counts.items():
results[0].append(key)
results[1].append(int(value))
s = results[0][np.argmax(np.array(results[1]))]
return r
# %%
def shors_breaker(N):
N = int(N)
while True:
a = randint(0, N - 1)
g = gcd(a, N)
if g != 1 or N == 1:
return g, N // g
else:
r = period(a, N)
if r % 2 != 0:
continue
elif pow(a, r // 2, N) == -1:
continue
else:
p = gcd(pow(a, r // 2) + 1, N)
q = gcd(pow(a, r // 2) - 1, N)
if p == N or q == N:
continue
return p, q
# %%
def modular_inverse(a, m):
a = a % m;
for x in range(1, m):
if ((a * x) % m == 1):
return x
return 1
# %%
N_shor = public[1]
assert N_shor > 0, "Input must be positive"
p, q = shors_breaker(N_shor)
phi = (p - 1) * (q - 1)
d_shor = modular_inverse(public[0], phi)
# %% md
## Cracking RSA using Shor's Algorithm
# %%
decrypted_msg = RSA_module.decrypt(encryption_obj, (d_shor, N_shor))
print('\nMessage Cracked using Shors Algorithm: ' + decrypted_msg + "\n")
# %%
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。