| orphan: |
|---|
This document describes how we test the Swift compiler, the Swift runtime, and the Swift standard library.
We use multiple approaches to test the Swift toolchain.
Purpose: primary testsuites for the Swift toolchain.
Contents: Functional and regression tests for all toolchain components.
Run by:
You can run Swift tests using the build-script, or, alternatively, using
these targets in the build directory:
check-swift
Runs tests from the ${SWIFT_SOURCE_ROOT}/test directory.
check-swift-validation
Runs tests from the ${SWIFT_SOURCE_ROOT}/validation-test directory.
check-swift-all
Runs all tests.
For day-to-day work on the Swift compiler, using check-swift should be sufficient. The buildbot runs validation tests, so if those are accidentally broken, it should not go unnoticed.
Before committing a large change to a compiler (especially a language change), or API changes to the standard library, it is recommended to run validation test suite.
For every target above, there are variants for different optimizations:
check-swift) -- runs execution tests in
-Onone mode;-optimize suffix (e.g., check-swift-optimize) -- runs
execution tests in -O mode; This target will only run tests marked as
executable_test.-optimize-unchecked suffix (e.g.,
check-swift-optimize-unchecked) -- runs execution tests in
-Ounchecked mode. This target will only run tests marked as
executable_test.If you need to manually run certain tests, you can invoke LLVM's lit.py script directly. For example:
% ${LLVM_SOURCE_ROOT}/utils/lit/lit.py -sv ${SWIFT_BUILD_ROOT}/test-iphonesimulator-i386/Parse/
This runs the tests in the test/Parse/ directory targeting the 32-bit iOS
Simulator. The -sv options give you a nice progress bar and only show you
output from the tests that fail.
One downside of using this form is that you're appending relative paths from the source directory to the test directory in your build directory. (That is, there may not actually be a directory named 'Parse' in 'test-iphonesimulator-i386/'; the invocation works because there is one in the source 'test/' directory.) There is a more verbose form that specifies the testing configuration explicitly, which then allows you to test files regardless of location.
% ${LLVM_SOURCE_ROOT}/utils/lit/lit.py -sv --param swift_site_config=${SWIFT_BUILD_ROOT}/test-iphonesimulator-i386/lit.site.cfg ${SWIFT_SOURCE_ROOT}/test/Parse/
For more complicated configuration, copy the invocation from one of the build
targets mentioned above and modify it as necessary. lit.py also has several
useful features, like timing tests and providing a timeout. Check these features
out with lit.py -h.
When adding a new testcase, try to find an existing test file focused on the same topic rather than starting a new test file. There is a fixed runtime cost for every test file. On the other hand, avoid dumping new tests in a file that is only remotely related to the purpose of the new tests.
Don't limit a test to a certain platform or hardware configuration just because this makes the test slightly easier to write. This sometimes means a little bit more work when adding the test, but the payoff from the increased testing is significant. We heavily rely on portable tests to port Swift to other platforms.
Avoid using unstable language features in tests which test something else (for example, avoid using an unstable underscored attribute when another non-underscored attribute would work).
Avoid using arbitrary implementation details of the standard library. Always prefer to define types locally in the test, if feasible.
Avoid purposefully shadowing names from the standard library, this makes the test extremely confusing (if nothing else, to understand the intent --- was the compiler bug triggered by this shadowing?) When reducing a compiler testcase from the standard library source, rename the types and APIs in the testcase to differ from the standard library APIs.
In IRGen, SILGen and SIL tests, avoid using platform-dependent implementation details of the standard library (unless doing so is point of the test). Platform-dependent details include:
Int (use integer types with explicit types instead).String, Array, Dictionary, Set. These differ
between platforms that have Objective-C interop and those that don't.Unless testing the standard library, avoid using arbitrary standard library
types and APIs, even if it is very convenient for you to do so in your tests.
Using the more common APIs like Array subscript or + on IntXX is
acceptable. This is important because you can't rely on the full standard
library being available. The long-term plan is to introduce a mock, minimal
standard library that only has a very basic set of APIs.
If you write an executable test please add REQUIRES: executable_test to the
test.
Substitutions that start with %target configure the compiler for building
code for the target that is not the build machine:
%target-parse-verify-swift: parse and type check the current Swift file
for the target platform and verify diagnostics, like swift -parse -verify
%s.
Use this substitution for testing semantic analysis in the compiler.
%target-swift-frontend: run swift -frontend for the target.
Use this substitution (with extra arguments) for tests that don't fit any other pattern.
%target-swift-frontend(mock-sdk: mock sdk arguments ) other
arguments: like %target-swift-frontend, but allows to specify command
line parameters (typically -sdk and -I) to use a mock SDK and SDK
overlay that would take precedence over the target SDK.
%target-build-swift: compile and link a Swift program for the target.
Use this substitution only when you intend to run the program later in the test.
%target-run-simple-swift: build a one-file Swift program and run it on
the target machine.
Use this substitution for executable tests that don't require special compiler arguments.
Add REQUIRES: executable_test to the test.
%target-run-stdlib-swift: like %target-run-simple-swift with
-parse-stdlib -Xfrontend -disable-access-control.
This is sometimes useful for testing the Swift standard library.
Add REQUIRES: executable_test to the test.
%target-repl-run-simple-swift: run a Swift program in a REPL on the
target machine.
%target-run: run a command on the target machine.
Add REQUIRES: executable_test to the test.
%target-jit-run: run a Swift program on the target machine using a JIT
compiler.
%target-swiftc_driver: FIXME
%target-sil-opt: run sil-opt for the target.
%target-sil-extract: run sil-extract for the target.
%target-swift-ide-test: run swift-ide-test for the target.
%target-swift-ide-test(mock-sdk: mock sdk arguments ) other
arguments: like %target-swift-ide-test, but allows to specify command
line parameters to use a mock SDK.
%target-swiftc_driver: FIXME.
%target-swift-autolink-extract: run swift-autolink-extract for the
target to extract its autolink flags on platforms that support them (when the
autolink-extract feature flag is set)
%target-clang: run the system's clang++ for the target.
If you want to run the clang executable that was built alongside
Swift, use %clang instead.
%target-ld: run ld configured with flags pointing to the standard
library directory for the target.
%target-cc-options: the clang flags to setup the target with the right
architecture and platform version.
Always use %target-* substitutions unless you have a good reason. For
example, an exception would be a test that checks how the compiler handles
mixing module files for incompatible platforms (that test would need to compile
Swift code for two different platforms that are known to be incompatible).
When you can't use %target-* substitutions, you can use:
%swift_driver_plain: FIXME.%swiftc_driver_plain: FIXME.%swift_driver: FIXME.%swiftc_driver: FIXME.%sil-opt: FIXME.%sil-extract: FIXME.%lldb-moduleimport-test: FIXME.%swift-ide-test_plain: FIXME.%swift-ide-test: FIXME.%llvm-opt: FIXME.%swift: FIXME.%clang-include-dir: FIXME.%clang-importer-sdk: FIXME.Other substitutions:
%leaks-runner: FIXME.%clang_apinotes: FIXME.%clang: FIXME.%target-triple: FIXME, possible values.%target-cpu: FIXME, possible values.%target-os: FIXME, possible values.%target-object-format: the platform's object format (elf, macho, coff).%target-runtime: the platform's Swift runtime (objc, native).%target-ptrsize: the pointer size of the target (32, 64).%sdk: FIXME.%gyb: FIXME.%platform-module-dir: absolute path of the directory where the standard
library module file for the target platform is stored. For example,
/.../lib/swift/macosx.%platform-sdk-overlay-dir: absolute path of the directory where the SDK
overlay module files for the target platform are stored.%target-swiftmodule-name and %target-swiftdoc-name: the basename of
swiftmodule and swiftdoc files for a framework compiled for the target (for
example, arm64.swiftmodule and arm64.swiftdoc).%target-sdk-name: only for Apple platforms: xcrun-style SDK name
(macosx, iphoneos, iphonesimulator).When writing a test where output (or IR, SIL) depends on the bitness of the target CPU, use this pattern:
// RUN: %target-swift-frontend ... | FileCheck --check-prefix=CHECK --check-prefix=CHECK-%target-ptrsize %s
// CHECK: common line
// CHECK-32: only for 32-bit
// CHECK-64: only for 64-bit
// FileCheck does a single pass for a combined set of CHECK lines, so you can
// do this:
//
// CHECK: define @foo() {
// CHECK-32: integer_literal $Builtin.Int32, 0
// CHECK-64: integer_literal $Builtin.Int64, 0
When writing a test where output (or IR, SIL) depends on the target CPU itself, use this pattern:
// RUN: %target-swift-frontend ... | FileCheck --check-prefix=CHECK --check-prefix=CHECK-%target-cpu %s // CHECK: common line // CHECK-i386: only for i386 // CHECK-x86_64: only for x86_64 // CHECK-armv7: only for armv7 // CHECK-arm64: only for arm64
REQUIRES and XFAIL
FIXME: full list.
swift_ast_verifier: present if the AST verifier is enabled in this build.When writing a test specific to x86, if possible, prefer REQUIRES:
CPU=i386_or_x86_64 to REQUIRES: CPU=x86_64.
swift_test_mode_optimize[_unchecked|none] and
swift_test_mode_optimize[_unchecked|none]_<CPUNAME> to specify a test mode
plus cpu configuration.
optimized_stdlib_<CPUNAME>` to specify a optimized stdlib plus cpu
configuration.
REQUIRES: executable_test
This feature marks an executable test. The test harness makes this feature generally available. It can be used to restrict the set of tests to run.
Tests accept command line parameters, run StdlibUnittest-based test binary
with --help for more information.
In execution tests, memory management testing should be performed
using local variables enclosed in a closure passed to the standard
library autoreleasepool function. For example:
// A counter that's decremented by Canary's deinitializer.
var CanaryCount = 0
// A class whose instances increase a counter when they're destroyed.
class Canary {
deinit { ++CanaryCount }
}
// Test that a local variable is correctly released before it goes out of
// scope.
CanaryCount = 0
autoreleasepool {
let canary = Canary()
}
assert(CanaryCount == 1, "canary was not released")
Memory management tests should be performed in a local scope because Swift does
not guarantee the destruction of global variables. Code that needs to
interoperate with Objective-C may put references in the autorelease pool, so
code that uses an if true {} or similar no-op scope instead of
autoreleasepool may falsely report leaks or fail to catch overrelease bugs.
If you're specifically testing the autoreleasing behavior of code, or do not
expect code to interact with the Objective-C runtime, it may be OK to use if
true {}, but those assumptions should be commented in the test.
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。