代码拉取完成,页面将自动刷新
import warnings
warnings.filterwarnings("ignore")
import torch
import numpy as np
from tqdm import tqdm
from models.pats import PATS
from torch.cuda.amp import autocast as autocast
from torch.cuda.amp import GradScaler as GradScaler
from torch.utils.data.dataset import Dataset
import argparse
import os
import yaml
import random
import cv2
from torch.utils.data.dataloader import DataLoader
def _resize_img(depth, shape=np.array([640, 480])):
w = depth.shape[1]
h = depth.shape[0]
w_new = shape[0]
h_new = shape[1]
if w/w_new < h/h_new:
gap = int((h - w / w_new * h_new) / 2)
crop_img = depth[gap:h - gap, :, :]
else:
gap = int((w - h / h_new * w_new) / 2)
crop_img = depth[:, gap:w - gap, :]
resize_img = cv2.resize(
crop_img, tuple(shape))
return resize_img
def Resize_img(left):
size = 1600
h_l, w_l = left.shape[:2]
max_shape_l = max(h_l, w_l)
size_l = size / max_shape_l
left = _resize_img(left, np.array([int(w_l * size_l), int(h_l * size_l)]))
h_l, w_l = left.shape[:2]
h_l2 = h_l // 32 * 32 + (1 - int(h_l % 32 == 0)) * 32
w_l2 = w_l // 32 * 32 + (1 - int(w_l % 32 == 0)) * 32
max_width = w_l2
max_height = h_l2
left = cv2.copyMakeBorder(left, 0, max_height - h_l, 0, max_width - w_l, cv2.BORDER_CONSTANT, None, 0)
return left
class VideoDataLoader(Dataset):
# the folder should look like:
# -- data_path
# -- 001.png
# -- 002.png
def __init__(self, data_path):
self.data_path = data_path
images_list = sorted(os.listdir(data_path))
self.source_path = f'{data_path}/{images_list[0]}'
self.target_list = [f'{data_path}/{image}' for image in images_list[1:]]
def __len__(self):
return len(self.target_list)
def __getitem__(self, index):
left = cv2.imread(self.source_path)
right = cv2.imread(self.target_list[index])
left = Resize_img(left)
right = Resize_img(right)
source_name = os.path.basename(self.source_path).split('.')[0]
target_name = os.path.basename(self.target_list[index]).split('.')[0]
data = {
'image0': left,
'image1': right,
'pair_name': f'{source_name}_{target_name}'
}
return data
def make_colorwheel():
"""
Generates a color wheel for optical flow visualization as presented in:
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
Code follows the original C++ source code of Daniel Scharstein.
Code follows the the Matlab source code of Deqing Sun.
Returns:
np.ndarray: Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros((ncols, 3))
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
col = col+RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
colorwheel[col:col+YG, 1] = 255
col = col+YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
col = col+GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
colorwheel[col:col+CB, 2] = 255
col = col+CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
col = col+BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
colorwheel[col:col+MR, 0] = 255
return colorwheel
def flow_uv_to_colors(u, v, convert_to_bgr=False):
"""
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
Args:
u (np.ndarray): Input horizontal flow of shape [H,W]
v (np.ndarray): Input vertical flow of shape [H,W]
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
colorwheel = make_colorwheel() # shape [55x3]
ncols = colorwheel.shape[0]
rad = np.sqrt(np.square(u) + np.square(v))
a = np.arctan2(-v, -u)/np.pi
fk = (a+1) / 2*(ncols-1)
k0 = np.floor(fk).astype(np.int32)
k1 = k0 + 1
k1[k1 == ncols] = 0
f = fk - k0
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:,i]
col0 = tmp[k0] / 255.0
col1 = tmp[k1] / 255.0
col = (1-f)*col0 + f*col1
idx = (rad <= 1)
col[idx] = 1 - rad[idx] * (1-col[idx])
col[~idx] = col[~idx] * 0.75 # out of range
# Note the 2-i => BGR instead of RGB
ch_idx = 2-i if convert_to_bgr else i
flow_image[:,:,ch_idx] = np.floor(255 * col)
return flow_image
def coord_trans(u, v):
rad = np.sqrt(np.square(u) + np.square(v))
u /= (rad+1e-3)
v /= (rad+1e-3)
return u, v
def kp_color(u, v, resolution):
h, w = resolution
x = np.linspace(-1, 1, w)
y = np.linspace(-1, 1, h)
xx, yy = np.meshgrid(x, y)
xx, yy = coord_trans(xx, yy)
vis = flow_uv_to_colors(xx, yy)
color = vis[v.astype(np.int32), u.astype(np.int32)]
return color
def draw_kp(img, kps, colors):
for i, kp in enumerate(kps):
img = cv2.circle(img, (int(kp[1]), int(kp[0])), 1, colors[i].tolist(), -1)
return img
def draw_matches(img, kps1, kps2):
for i, kp in enumerate(kps1):
cv2.line(img, (int(kps1[i][1]), int(kps1[i][0])), (int(kps2[i][1]), int(kps2[i][0])), (0,255,0), 1)
return img
def vis_matches(image0, image1, kp0, kp1):
lh, lw = image0.shape[:2]
rh, rw = image1.shape[:2]
mask1 = np.logical_and.reduce(np.array((kp0[:,1]>=0, kp0[:,1]<lw, kp0[:,0]>=0, kp0[:,0]<lh)))
mask2 = np.logical_and.reduce(np.array((kp1[:,1]>=0, kp1[:,1]<rw, kp1[:,0]>=0, kp1[:,0]<rh)))
mask = np.logical_and.reduce(np.array((mask1, mask2)))
kp0 = kp0[mask]
kp1 = kp1[mask]
color = kp_color(kp0[:,1], kp0[:,0], (lh, lw))
image0 = draw_kp(image0, kp0, color)
image1 = draw_kp(image1, kp1, color)
pad_width = 5
zero_image = np.zeros([lh, pad_width, 3])
vis = np.concatenate([image0, zero_image, image1], axis=1)
# kp1[:,1] += lw + pad_width
# vis = draw_matches(vis, kp0, kp1)
return vis
if __name__ == '__main__':
torch.multiprocessing.set_sharing_strategy('file_system')
parser = argparse.ArgumentParser()
parser.add_argument('config', type=str)
param = parser.parse_args()
if param.config is not None:
with open(param.config, 'r') as f:
yaml_dict = yaml.safe_load(f)
for k, v in yaml_dict.items():
param.__dict__[k] = v
# initialize random seed
torch.manual_seed(param.seed)
np.random.seed(param.seed)
random.seed(param.seed)
model = PATS(param)
model.load_state_dict()
model = model.cuda().eval()
save_path = 'results'
os.system(f'mkdir -p {save_path}')
dataset = VideoDataLoader(param.data_path)
loader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0, pin_memory=True)
for data in tqdm(loader):
data['image0'] = data['image0'].cuda()
data['image1'] = data['image1'].cuda()
pair_name = data['pair_name'][0]
with torch.no_grad():
result = model(data)
kp0_numpy = result["matches_l"].cpu().numpy()
kp1_numpy = result["matches_r"].cpu().numpy()
image0_numpy = data["image0"][0].cpu().numpy()
image1_numpy = data["image1"][0].cpu().numpy()
vis_img = vis_matches(image0_numpy, image1_numpy, kp0_numpy, kp1_numpy)
cv2.imwrite(f'{save_path}/{pair_name}.png', vis_img)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。