1 Star 0 Fork 0

zhai/pats

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
demo.py 7.82 KB
一键复制 编辑 原始数据 按行查看 历史
李易瑾 提交于 2023-08-28 21:05 . add eval code
import warnings
warnings.filterwarnings("ignore")
import torch
import numpy as np
from tqdm import tqdm
from models.pats import PATS
from torch.cuda.amp import autocast as autocast
from torch.cuda.amp import GradScaler as GradScaler
from torch.utils.data.dataset import Dataset
import argparse
import os
import yaml
import random
import cv2
from torch.utils.data.dataloader import DataLoader
def _resize_img(depth, shape=np.array([640, 480])):
w = depth.shape[1]
h = depth.shape[0]
w_new = shape[0]
h_new = shape[1]
if w/w_new < h/h_new:
gap = int((h - w / w_new * h_new) / 2)
crop_img = depth[gap:h - gap, :, :]
else:
gap = int((w - h / h_new * w_new) / 2)
crop_img = depth[:, gap:w - gap, :]
resize_img = cv2.resize(
crop_img, tuple(shape))
return resize_img
def Resize_img(left):
size = 1600
h_l, w_l = left.shape[:2]
max_shape_l = max(h_l, w_l)
size_l = size / max_shape_l
left = _resize_img(left, np.array([int(w_l * size_l), int(h_l * size_l)]))
h_l, w_l = left.shape[:2]
h_l2 = h_l // 32 * 32 + (1 - int(h_l % 32 == 0)) * 32
w_l2 = w_l // 32 * 32 + (1 - int(w_l % 32 == 0)) * 32
max_width = w_l2
max_height = h_l2
left = cv2.copyMakeBorder(left, 0, max_height - h_l, 0, max_width - w_l, cv2.BORDER_CONSTANT, None, 0)
return left
class VideoDataLoader(Dataset):
# the folder should look like:
# -- data_path
# -- 001.png
# -- 002.png
def __init__(self, data_path):
self.data_path = data_path
images_list = sorted(os.listdir(data_path))
self.source_path = f'{data_path}/{images_list[0]}'
self.target_list = [f'{data_path}/{image}' for image in images_list[1:]]
def __len__(self):
return len(self.target_list)
def __getitem__(self, index):
left = cv2.imread(self.source_path)
right = cv2.imread(self.target_list[index])
left = Resize_img(left)
right = Resize_img(right)
source_name = os.path.basename(self.source_path).split('.')[0]
target_name = os.path.basename(self.target_list[index]).split('.')[0]
data = {
'image0': left,
'image1': right,
'pair_name': f'{source_name}_{target_name}'
}
return data
def make_colorwheel():
"""
Generates a color wheel for optical flow visualization as presented in:
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
Code follows the original C++ source code of Daniel Scharstein.
Code follows the the Matlab source code of Deqing Sun.
Returns:
np.ndarray: Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros((ncols, 3))
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
col = col+RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
colorwheel[col:col+YG, 1] = 255
col = col+YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
col = col+GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
colorwheel[col:col+CB, 2] = 255
col = col+CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
col = col+BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
colorwheel[col:col+MR, 0] = 255
return colorwheel
def flow_uv_to_colors(u, v, convert_to_bgr=False):
"""
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
Args:
u (np.ndarray): Input horizontal flow of shape [H,W]
v (np.ndarray): Input vertical flow of shape [H,W]
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
colorwheel = make_colorwheel() # shape [55x3]
ncols = colorwheel.shape[0]
rad = np.sqrt(np.square(u) + np.square(v))
a = np.arctan2(-v, -u)/np.pi
fk = (a+1) / 2*(ncols-1)
k0 = np.floor(fk).astype(np.int32)
k1 = k0 + 1
k1[k1 == ncols] = 0
f = fk - k0
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:,i]
col0 = tmp[k0] / 255.0
col1 = tmp[k1] / 255.0
col = (1-f)*col0 + f*col1
idx = (rad <= 1)
col[idx] = 1 - rad[idx] * (1-col[idx])
col[~idx] = col[~idx] * 0.75 # out of range
# Note the 2-i => BGR instead of RGB
ch_idx = 2-i if convert_to_bgr else i
flow_image[:,:,ch_idx] = np.floor(255 * col)
return flow_image
def coord_trans(u, v):
rad = np.sqrt(np.square(u) + np.square(v))
u /= (rad+1e-3)
v /= (rad+1e-3)
return u, v
def kp_color(u, v, resolution):
h, w = resolution
x = np.linspace(-1, 1, w)
y = np.linspace(-1, 1, h)
xx, yy = np.meshgrid(x, y)
xx, yy = coord_trans(xx, yy)
vis = flow_uv_to_colors(xx, yy)
color = vis[v.astype(np.int32), u.astype(np.int32)]
return color
def draw_kp(img, kps, colors):
for i, kp in enumerate(kps):
img = cv2.circle(img, (int(kp[1]), int(kp[0])), 1, colors[i].tolist(), -1)
return img
def draw_matches(img, kps1, kps2):
for i, kp in enumerate(kps1):
cv2.line(img, (int(kps1[i][1]), int(kps1[i][0])), (int(kps2[i][1]), int(kps2[i][0])), (0,255,0), 1)
return img
def vis_matches(image0, image1, kp0, kp1):
lh, lw = image0.shape[:2]
rh, rw = image1.shape[:2]
mask1 = np.logical_and.reduce(np.array((kp0[:,1]>=0, kp0[:,1]<lw, kp0[:,0]>=0, kp0[:,0]<lh)))
mask2 = np.logical_and.reduce(np.array((kp1[:,1]>=0, kp1[:,1]<rw, kp1[:,0]>=0, kp1[:,0]<rh)))
mask = np.logical_and.reduce(np.array((mask1, mask2)))
kp0 = kp0[mask]
kp1 = kp1[mask]
color = kp_color(kp0[:,1], kp0[:,0], (lh, lw))
image0 = draw_kp(image0, kp0, color)
image1 = draw_kp(image1, kp1, color)
pad_width = 5
zero_image = np.zeros([lh, pad_width, 3])
vis = np.concatenate([image0, zero_image, image1], axis=1)
# kp1[:,1] += lw + pad_width
# vis = draw_matches(vis, kp0, kp1)
return vis
if __name__ == '__main__':
torch.multiprocessing.set_sharing_strategy('file_system')
parser = argparse.ArgumentParser()
parser.add_argument('config', type=str)
param = parser.parse_args()
if param.config is not None:
with open(param.config, 'r') as f:
yaml_dict = yaml.safe_load(f)
for k, v in yaml_dict.items():
param.__dict__[k] = v
# initialize random seed
torch.manual_seed(param.seed)
np.random.seed(param.seed)
random.seed(param.seed)
model = PATS(param)
model.load_state_dict()
model = model.cuda().eval()
save_path = 'results'
os.system(f'mkdir -p {save_path}')
dataset = VideoDataLoader(param.data_path)
loader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0, pin_memory=True)
for data in tqdm(loader):
data['image0'] = data['image0'].cuda()
data['image1'] = data['image1'].cuda()
pair_name = data['pair_name'][0]
with torch.no_grad():
result = model(data)
kp0_numpy = result["matches_l"].cpu().numpy()
kp1_numpy = result["matches_r"].cpu().numpy()
image0_numpy = data["image0"][0].cpu().numpy()
image1_numpy = data["image1"][0].cpu().numpy()
vis_img = vis_matches(image0_numpy, image1_numpy, kp0_numpy, kp1_numpy)
cv2.imwrite(f'{save_path}/{pair_name}.png', vis_img)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/zhaizhaizhai_buaa/pats.git
git@gitee.com:zhaizhaizhai_buaa/pats.git
zhaizhaizhai_buaa
pats
pats
master

搜索帮助