1 Star 0 Fork 0

zhangjungang/beats

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
importer.go 3.61 KB
一键复制 编辑 原始数据 按行查看 历史
// Package mlimporter contains code for loading Elastic X-Pack Machine Learning job configurations.
package mlimporter
import (
"encoding/json"
"fmt"
"io/ioutil"
"github.com/pkg/errors"
"github.com/elastic/beats/libbeat/common"
"github.com/elastic/beats/libbeat/logp"
)
// MLConfig contains the required configuration for loading one job and the associated
// datafeed.
type MLConfig struct {
ID string `config:"id"`
JobPath string `config:"job"`
DatafeedPath string `config:"datafeed"`
MinVersion string `config:"min_version"`
}
// MLLoader is a subset of the Elasticsearch client API capable of
// loading the ML configs.
type MLLoader interface {
Request(method, path string, pipeline string, params map[string]string, body interface{}) (int, []byte, error)
LoadJSON(path string, json map[string]interface{}) ([]byte, error)
GetVersion() string
}
func readJSONFile(path string) (common.MapStr, error) {
file, err := ioutil.ReadFile(path)
if err != nil {
return nil, err
}
var result common.MapStr
err = json.Unmarshal(file, &result)
return result, err
}
// ImportMachineLearningJob uploads the job and datafeed configuration to ES/xpack.
func ImportMachineLearningJob(esClient MLLoader, cfg *MLConfig) error {
jobURL := fmt.Sprintf("/_xpack/ml/anomaly_detectors/%s", cfg.ID)
datafeedURL := fmt.Sprintf("/_xpack/ml/datafeeds/datafeed-%s", cfg.ID)
if len(cfg.MinVersion) > 0 {
esVersion, err := common.NewVersion(esClient.GetVersion())
if err != nil {
return errors.Errorf("Error parsing ES version: %s: %v", esClient.GetVersion(), err)
}
minVersion, err := common.NewVersion(cfg.MinVersion)
if err != nil {
return errors.Errorf("Error parsing min_version: %s: %v", minVersion, err)
}
if esVersion.LessThan(minVersion) {
logp.Debug("machine-learning", "Skipping job %s, because ES version (%s) is smaller than min version (%s)",
cfg.ID, esVersion, minVersion)
return nil
}
}
// We always overwrite ML job configs, so delete them before loading
status, response, err := esClient.Request("GET", jobURL, "", nil, nil)
if status == 200 {
logp.Debug("machine-learning", "Job %s already exists", cfg.ID)
return nil
}
if status != 404 && err != nil {
return errors.Errorf("Error checking that job exists: %v. Response %s", err, response)
}
job, err := readJSONFile(cfg.JobPath)
if err != nil {
return errors.Errorf("Error reading job file %s: %v", cfg.JobPath, err)
}
body, err := esClient.LoadJSON(jobURL, job)
if err != nil {
return errors.Wrapf(err, "load job under %s. Response body: %s", jobURL, body)
}
datafeed, err := readJSONFile(cfg.DatafeedPath)
if err != nil {
return errors.Errorf("Error reading datafeed path %s: %v", cfg.DatafeedPath, err)
}
// set the job ID
datafeed.Put("job_id", cfg.ID)
body, err = esClient.LoadJSON(datafeedURL, datafeed)
if err != nil {
return errors.Wrapf(err, "load datafeed under %s. Response body: %s", datafeedURL, body)
}
return nil
}
// HaveXpackML checks whether X-pack is installed and has Machine Learning enabled.
func HaveXpackML(esClient MLLoader) (bool, error) {
status, response, err := esClient.Request("GET", "/_xpack", "", nil, nil)
if status == 404 || status == 400 {
return false, nil
}
if err != nil {
return false, err
}
type xpackResponse struct {
Features struct {
ML struct {
Available bool `json:"available"`
Enabled bool `json:"enabled"`
} `json:"ml"`
} `json:"features"`
}
var xpack xpackResponse
err = json.Unmarshal(response, &xpack)
if err != nil {
return false, errors.Wrap(err, "unmarshal")
}
return xpack.Features.ML.Available && xpack.Features.ML.Enabled, nil
}
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/zhangjungang/beats.git
git@gitee.com:zhangjungang/beats.git
zhangjungang
beats
beats
v6.2.3

搜索帮助