代码拉取完成,页面将自动刷新
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import tensorflow as tf
import tflearn
import numpy as np
import os
logger = logging.getLogger("logger")
def act(z, name=None):
b1 = tf.get_variable(name + 'b1',shape=z.shape[-1])
# b2 = tf.get_variable(name + 'b2',shape=z.shape[-1])
y = tf.nn.relu(z + b1) #* tf.sigmoid(-z + b1 - b2)
return y
class ActorNetwork(object):
"""
Input to the network is the state, output is the action
under a deterministic policy.
The output layer activation is a tanh to keep the action
between -action_bound and action_bound
"""
def __init__(self, sess, env, config, is_training=None):
self._set_hyper_parameters(sess, env, config, is_training)
# Actor Network
with tf.name_scope("online"):
self._create_actor_network()
if self.is_training:
self._create_optimizer()
# Target Network
with tf.name_scope("target"):
self._create_target_network()
self._create_summary_ops()
######################## init methods ########################
def _set_hyper_parameters(self, sess, env, config, is_training):
self.summary_dir = os.path.join(config.directory, "summaries")
self.train_summary_op_list = list()
self.sess = sess
self.s_dim = env.state_cardin-1
self.a_dim = env.input_cardin * env.state_cardin
self.env = env
self.learning_rate = tf.Variable(config.actor_lr, trainable=False)
self.learning_rate_decay = config.lr_decay
self.tau = config.tau
self.batch_size = config.batch_size
self.hidden_size = config.actor_hid
self.layers = config.actor_layers
self.is_training = is_training
self.opt = config.opt
self.drop = config.actor_drop
if self.drop > 0.0:
raise Warning("Actor Network: dropout is not implemented")
def _create_actor_network(self):
last_trainable_var = len(tf.trainable_variables())
self.inputs, self.out = self._create_network("online")
self.network_params = tf.trainable_variables()[last_trainable_var:]
def _create_target_network(self):
last_trainable_var = len(tf.trainable_variables())
self.target_inputs, self.target_out = self._create_network("target")
self.target_network_params = tf.trainable_variables()[last_trainable_var:]
# Op for periodically updating target network with online network
# weights
# self.update_target_network_params = \
# [self.target_network_params[i].assign(
# tf.multiply(self.target_network_params[i], tf.div(self._global_step, tf.add(self._global_step, 1.))) +
# tf.div(self.network_params[i], tf.add(self._global_step, 1.)))
# for i in range(len(self.target_network_params))]
# self.update_target_network_params = \
# [self.target_network_params[i].assign(self.network_params[i])
# for i in range(len(self.target_network_params))]
self.update_target_network_params = \
[self.target_network_params[i].assign(
tf.multiply(self.target_network_params[i], 1 - self.tau) +
tf.multiply(self.network_params[i], self.tau))
for i in range(len(self.target_network_params))]
def _create_network(self,name):
bias_init = tflearn.initializations.uniform(shape=None, minval=0.1, maxval=0.2,dtype=tf.float32)
inputs = tflearn.input_data(shape=[None, self.s_dim])
net = inputs
for i in range(self.layers):
net = tflearn.fully_connected(net, self.hidden_size, name="fc-{}".format(i+1), bias=True, bias_init=bias_init)
net = tflearn.layers.normalization.batch_normalization(net, name="bn-{}".format(i+1))
# net = tflearn.activations.relu(net)
net = act(net, name="{}fc-{}".format(name, i+1) )
# if self.is_training:
# net = tf.nn.dropout(net, 0.5, name="dropout-{}".format(i+1))
bias_init = tflearn.initializations.uniform(shape=None, minval=-0.04, maxval=0.04,dtype=tf.float32)
out = tflearn.fully_connected(
net, self.a_dim, bias_init=bias_init)
out = tflearn.layers.normalization.batch_normalization(out, name="bn-out")
out = tf.reshape(out , [-1, self.env.input_cardin, self.env.state_cardin])
out = tf.reshape(tf.nn.softmax(out, axis=1), [-1, self.a_dim])
return inputs, out
def _create_optimizer(self):
# global counter
self._global_step = tf.Variable(0.0, trainable=False, name="global_step")
self._global_inc = self._global_step.assign_add(1.0)
# This gradient will be provided by the critic network
self.action_gradient = tf.placeholder(tf.float32, [None, self.a_dim])
# Combine the gradients here
self.actor_gradients = tf.gradients(
self.out, self.network_params, -self.action_gradient)
# self.actor_gradients = list(map(lambda x: tf.div(x, self.batch_size), self.actor_gradients))
# policy_entropy = -tf.constant(,uu,r gk vtjrubvfor g1,g2 in zip(self.actor_gradients,entropy_gradients)]
# Optimization Op
if self.opt == "adam":
self.optimizer = tf.train.AdamOptimizer(self.learning_rate)
elif self.opt == "sgd":
self.optimizer = tf.train.GradientDescentOptimizer(self.learning_rate)
else:
raise ValueError("{} is not a valid optimizer".format(self.opt))
self.optimize = self.optimizer.apply_gradients(zip(self.actor_gradients, self.network_params))
# learning rate decay
self._lr_decay = tf.assign(self.learning_rate, self.learning_rate * self.learning_rate_decay)
grad = tf.concat([tf.reshape(g, [-1]) for g in self.actor_gradients], axis=0)
self.grad_norm = tf.log(tf.norm(grad))
self.train_summary_op_list.append(tf.summary.scalar("grad_norm", self.grad_norm))
def _create_summary_ops(self):
self.summary_writer = tf.summary.FileWriter(self.summary_dir)
if self.is_training:
self.train_summary = tf.summary.merge(self.train_summary_op_list)
self.avg_reward = tf.placeholder(tf.float32, shape=(), name="reward")
self.avg_reward_target = tf.placeholder(tf.float32, shape=(), name="reward_target")
ro = tf.summary.scalar("avg_reward", self.avg_reward)
ro_target = tf.summary.scalar("avg_reward_target", self.avg_reward_target)
self._ro_summary = tf.summary.merge([ro, ro_target])
self._ro_summary_step = tf.Variable(0.0, trainable=False, name="ro_summary_step")
self._ro_summary_inc = self._ro_summary_step.assign_add(1.0)
######################## computational methods ########################
def train(self, inputs, a_gradient):
_,i,s, g = self.sess.run([self.optimize, self._global_step, self.train_summary, self.grad_norm], feed_dict={
self.inputs: inputs,
self.action_gradient: a_gradient
})
self.summary_writer.add_summary(s, i)
return g
def predict(self, inputs):
return self.sess.run(self.out, feed_dict={
self.inputs: inputs
})
def predict_target(self, inputs):
return self.sess.run(self.target_out, feed_dict={
self.target_inputs: inputs
})
def update_target_network(self):
self.sess.run([self.update_target_network_params, self._global_inc])
def lr(self):
return self.sess.run(self.learning_rate)
def lr_decay(self):
self.sess.run(self._lr_decay)
def global_step(self):
return self.sess.run(self._global_step)
def set_global_step(self, val):
return self.sess.run(self._global_step.assign(val))
def ro_summary(self, reward, reward_target):
s, i = self.sess.run([self._ro_summary, self._ro_summary_inc], feed_dict={self.avg_reward: reward,
self.avg_reward_target: reward_target})
self.summary_writer.add_summary(s, i)
class CriticNetwork(object):
"""
Input to the network is the state and action, output is Q(s,a).
The action must be obtained from the output of the Actor network.
"""
def __init__(self, sess, env, config, is_training=None):
self._set_hyper_parameters(sess, env, config, is_training)
# Critic network
self._create_critic_network()
if self.is_training:
self._create_optimizer()
# Target Network
self._create_target_network()
self._create_summary_ops()
######################## init methods ########################
def _set_hyper_parameters(self, sess, env, config, is_training):
self.summary_dir = os.path.join(config.directory, "summaries")
self.train_summary_op_list = list()
self.sess = sess
self.s_dim = env.state_cardin-1
self.a_dim = env.input_cardin * env.state_cardin
self.env = env
self.learning_rate = tf.Variable(config.critic_lr, trainable=False)
self.learning_rate_decay = config.lr_decay
self.tau = config.tau
self.gamma = config.gamma
self.batch_size = config.batch_size
self.hidden_size = config.critic_hid
self.layers = config.critic_layers
self.is_training = is_training
self.opt = config.opt
self.drop = config.critic_drop
if self.drop > 0.0:
raise Warning("Critic Network: dropout is not implemented")
def _create_critic_network(self):
last_trainable_var = len(tf.trainable_variables())
self.inputs, self.action, self.out = self._create_network("online")
self.network_params = tf.trainable_variables()[last_trainable_var:]
def _create_target_network(self):
last_trainable_var = len(tf.trainable_variables())
self.target_inputs, self.target_action, self.target_out = self._create_network("target")
self.target_network_params = tf.trainable_variables()[last_trainable_var:]
# self.update_target_network_params = \
# [self.target_network_params[i].assign(
# tf.multiply(self.target_network_params[i], tf.div(self._global_step, tf.add(self._global_step, 1.))) +
# tf.div(self.network_params[i], tf.add(self._global_step, 1.)))
# for i in range(len(self.target_network_params))]
# self.update_target_network_params = \
# [self.target_network_params[i].assign(self.network_params[i])
# for i in range(len(self.target_network_params))]
self.update_target_network_params = \
[self.target_network_params[i].assign(
tf.multiply(self.target_network_params[i], 1 - self.tau) +
tf.multiply(self.network_params[i], self.tau))
for i in range(len(self.target_network_params))]
def _create_network(self,name):
bias_init = tflearn.initializations.uniform(shape=None, minval=0.0, maxval=0.1,dtype=tf.float32)
inputs = tflearn.input_data(shape=[None, self.s_dim])
action = tflearn.input_data(shape=[None, self.a_dim])
net_s = inputs
for i in range(self.layers):
net_s = tflearn.fully_connected(net_s, self.hidden_size, name="fc-{}-s".format(i+1), bias=False, bias_init=bias_init)
net_s = tflearn.layers.normalization.batch_normalization(net_s, name="bn-{}-s".format(i+1))
# net_s = tflearn.activations.relu(net_s)
net_s = act(net_s, name="{}fc-{}-s".format(name,i+1))
# if self.is_training:
# net_s = tf.nn.dropout(net_s, 0.5, name="dropout-{}".format(i+1))
# Add the action tensor in the 2nd hidden layer
# Use two temp layers to get the corresponding weights and biases
net_a = action
for i in range(self.layers-1):
net_a = tflearn.fully_connected(net_a, self.hidden_size, name="fc-{}-a".format(i+1), bias=False, bias_init=bias_init)
net_a = tflearn.layers.normalization.batch_normalization(net_a, name="bn-{}-a".format(i+1))
# net_a = tflearn.activations.relu(net_a)
net_a = act(net_a, name="{}fc-{}-a".format(name,i+1))
# if self.is_training:
# net_a = tf.nn.dropout(net_a, 0.5, name="dropout-{}".format(i+1))
t1 = tflearn.fully_connected(net_s, self.hidden_size, name="fc-comb-s", bias=False, bias_init=bias_init)
t2 = tflearn.fully_connected(net_a, self.hidden_size, bias=False, name="fc-comb-s")
net = tflearn.layers.normalization.batch_normalization(t1+t2, name="bn-out-comb")
# net = tflearn.activation(t1+t2, activation='relu')
net = act(net, name="{}fc-out-comb".format(name))
out = tflearn.fully_connected(net, 1, name="fc-last", bias=False)
out = out / tf.norm(out.W)
return inputs, action, out
def _create_optimizer(self):
# global counter
self._global_step = tf.Variable(0.0,trainable=False, name="global_step")
self._global_inc = self._global_step.assign_add(1.0)
# Network target (y_i)
self.predicted_q_value = tf.placeholder(tf.float32, [None, 1])
# Define loss
self.loss = tflearn.mean_square(self.predicted_q_value, self.out)
# define optimization Op
if self.opt == "adam":
self.optimizer = tf.train.AdamOptimizer(self.learning_rate)
elif self.opt == "sgd":
self.optimizer = tf.train.GradientDescentOptimizer(self.learning_rate)
else:
raise ValueError("{} is not a valid optimizer".format(self.opt))
grad_and_vars = self.optimizer.compute_gradients(self.loss, self.network_params)
self.optimize = self.optimizer.apply_gradients(grad_and_vars)
self.action_grads = tf.gradients(self.out , self.action)
self._lr_decay = tf.assign(self.learning_rate, self.learning_rate * self.learning_rate_decay)
grad_vec = tf.concat([tf.reshape(g, [-1]) for (g,v) in grad_and_vars], axis=0)
self.grad_norm = tf.log(tf.norm(grad_vec))
self.train_summary_op_list.append(tf.summary.scalar("grad_norm", self.grad_norm))
def _create_summary_ops(self):
self.summary_writer = tf.summary.FileWriter(self.summary_dir)
if self.is_training:
self.train_summary = tf.summary.merge(self.train_summary_op_list)
######################## computational methods ########################
def train(self, inputs, action, predicted_q_value):
_, i, s, g = self.sess.run([self.optimize, self._global_step, self.train_summary, self.grad_norm], feed_dict={
self.inputs: inputs,
self.action: action,
self.predicted_q_value: predicted_q_value
})
self.summary_writer.add_summary(s, i)
return g
def predict(self, inputs, action):
return self.sess.run(self.out, feed_dict={
self.inputs: inputs,
self.action: action
})
def predict_target(self, inputs, action):
return self.sess.run(self.target_out, feed_dict={
self.target_inputs: inputs,
self.target_action: action
})
def action_gradients(self, inputs, actions):
return self.sess.run(self.action_grads, feed_dict={
self.inputs: inputs,
self.action: actions
})
def update_target_network(self):
self.sess.run([self.update_target_network_params, self._global_inc])
def lr(self):
return self.sess.run(self.learning_rate)
def lr_decay(self):
self.sess.run(self._lr_decay)
def global_step(self):
return self.sess.run(self._global_step)
def set_global_step(self, val):
return self.sess.run(self._global_step.assign(val))
# Taken from https://github.com/openai/baselines/blob/master/baselines/ddpg/noise.py, which is
# based on http://math.stackexchange.com/questions/1287634/implementing-ornstein-uhlenbeck-in-matlab
class OrnsteinUhlenbeckActionNoise:
def __init__(self, mu, sigma=0.3, sigma_dec=1., theta=.15, dt=1e-2, x0=None):
self.theta = theta
self.mu = mu
self.sigma = sigma
self._sigma_dec = sigma_dec
self.dt = dt
self.x0 = x0
self.reset()
def __call__(self):
x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + \
self.sigma * np.sqrt(self.dt) * np.random.normal(size=self.mu.shape)
self.x_prev = x
return x
def sigma_dec(self):
self.sigma *= self._sigma_dec
def reset(self):
self.x_prev = self.x0 if self.x0 is not None else np.zeros_like(self.mu)
def __repr__(self):
return 'OrnsteinUhlenbeckActionNoise'
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。