代码拉取完成,页面将自动刷新
BinaryLiteral.ToInt
(#6163)
// Copyright 2016 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package types
import (
"math"
"github.com/cznic/mathutil"
"github.com/juju/errors"
"github.com/pingcap/tidb/parser/opcode"
"github.com/pingcap/tidb/sessionctx/stmtctx"
)
// CoerceArithmetic converts datum to appropriate datum for arithmetic computing.
func CoerceArithmetic(sc *stmtctx.StatementContext, a Datum) (d Datum, err error) {
switch a.Kind() {
case KindString, KindBytes:
// MySQL will convert string to float for arithmetic operation
f, err := StrToFloat(sc, a.GetString())
if err != nil {
return d, errors.Trace(err)
}
d.SetFloat64(f)
return d, errors.Trace(err)
case KindMysqlTime:
// if time has no precision, return int64
t := a.GetMysqlTime()
de := t.ToNumber()
if t.Fsp == 0 {
iVal, err := de.ToInt()
if err != nil {
return d, errors.Trace(err)
}
d.SetInt64(iVal)
return d, nil
}
d.SetMysqlDecimal(de)
return d, nil
case KindMysqlDuration:
// if duration has no precision, return int64
du := a.GetMysqlDuration()
de := du.ToNumber()
if du.Fsp == 0 {
iVal, err := de.ToInt()
if err != nil {
return d, errors.Trace(err)
}
d.SetInt64(iVal)
return d, nil
}
d.SetMysqlDecimal(de)
return d, nil
case KindBinaryLiteral, KindMysqlBit:
val, err1 := a.GetBinaryLiteral().ToInt(sc)
d.SetUint64(val)
return d, err1
case KindMysqlEnum:
d.SetFloat64(a.GetMysqlEnum().ToNumber())
return d, nil
case KindMysqlSet:
d.SetFloat64(a.GetMysqlSet().ToNumber())
return d, nil
default:
return a, nil
}
}
// ComputePlus computes the result of a+b.
func ComputePlus(a, b Datum) (d Datum, err error) {
switch a.Kind() {
case KindInt64:
switch b.Kind() {
case KindInt64:
r, err1 := AddInt64(a.GetInt64(), b.GetInt64())
d.SetInt64(r)
return d, errors.Trace(err1)
case KindUint64:
r, err1 := AddInteger(b.GetUint64(), a.GetInt64())
d.SetUint64(r)
return d, errors.Trace(err1)
}
case KindUint64:
switch b.Kind() {
case KindInt64:
r, err1 := AddInteger(a.GetUint64(), b.GetInt64())
d.SetUint64(r)
return d, errors.Trace(err1)
case KindUint64:
r, err1 := AddUint64(a.GetUint64(), b.GetUint64())
d.SetUint64(r)
return d, errors.Trace(err1)
}
case KindFloat64:
switch b.Kind() {
case KindFloat64:
r := a.GetFloat64() + b.GetFloat64()
d.SetFloat64(r)
return d, nil
}
case KindMysqlDecimal:
switch b.Kind() {
case KindMysqlDecimal:
r := new(MyDecimal)
err = DecimalAdd(a.GetMysqlDecimal(), b.GetMysqlDecimal(), r)
d.SetMysqlDecimal(r)
d.SetFrac(mathutil.Max(a.Frac(), b.Frac()))
return d, err
}
}
_, err = InvOp2(a.GetValue(), b.GetValue(), opcode.Plus)
return d, err
}
// ComputeMinus computes the result of a-b.
func ComputeMinus(a, b Datum) (d Datum, err error) {
switch a.Kind() {
case KindInt64:
switch b.Kind() {
case KindInt64:
r, err1 := SubInt64(a.GetInt64(), b.GetInt64())
d.SetInt64(r)
return d, errors.Trace(err1)
case KindUint64:
r, err1 := SubIntWithUint(a.GetInt64(), b.GetUint64())
d.SetUint64(r)
return d, errors.Trace(err1)
}
case KindUint64:
switch b.Kind() {
case KindInt64:
r, err1 := SubUintWithInt(a.GetUint64(), b.GetInt64())
d.SetUint64(r)
return d, errors.Trace(err1)
case KindUint64:
r, err1 := SubUint64(a.GetUint64(), b.GetUint64())
d.SetUint64(r)
return d, errors.Trace(err1)
}
case KindFloat64:
switch b.Kind() {
case KindFloat64:
r := a.GetFloat64() - b.GetFloat64()
d.SetFloat64(r)
return d, nil
}
case KindMysqlDecimal:
switch b.Kind() {
case KindMysqlDecimal:
r := new(MyDecimal)
err = DecimalSub(a.GetMysqlDecimal(), b.GetMysqlDecimal(), r)
d.SetMysqlDecimal(r)
return d, err
}
}
_, err = InvOp2(a.GetValue(), b.GetValue(), opcode.Minus)
return d, errors.Trace(err)
}
// ComputeMul computes the result of a*b.
func ComputeMul(a, b Datum) (d Datum, err error) {
switch a.Kind() {
case KindInt64:
switch b.Kind() {
case KindInt64:
r, err1 := MulInt64(a.GetInt64(), b.GetInt64())
d.SetInt64(r)
return d, errors.Trace(err1)
case KindUint64:
r, err1 := MulInteger(b.GetUint64(), a.GetInt64())
d.SetUint64(r)
return d, errors.Trace(err1)
}
case KindUint64:
switch b.Kind() {
case KindInt64:
r, err1 := MulInteger(a.GetUint64(), b.GetInt64())
d.SetUint64(r)
return d, errors.Trace(err1)
case KindUint64:
r, err1 := MulUint64(a.GetUint64(), b.GetUint64())
d.SetUint64(r)
return d, errors.Trace(err1)
}
case KindFloat64:
switch b.Kind() {
case KindFloat64:
r := a.GetFloat64() * b.GetFloat64()
d.SetFloat64(r)
return d, nil
}
case KindMysqlDecimal:
switch b.Kind() {
case KindMysqlDecimal:
r := new(MyDecimal)
err = DecimalMul(a.GetMysqlDecimal(), b.GetMysqlDecimal(), r)
d.SetMysqlDecimal(r)
return d, nil
}
}
_, err = InvOp2(a.GetValue(), b.GetValue(), opcode.Mul)
return d, errors.Trace(err)
}
// ComputeDiv computes the result of a/b.
func ComputeDiv(sc *stmtctx.StatementContext, a, b Datum) (d Datum, err error) {
// MySQL support integer division Div and division operator /
// we use opcode.Div for division operator and will use another for integer division later.
// for division operator, we will use float64 for calculation.
switch a.Kind() {
case KindFloat64:
y, err1 := b.ToFloat64(sc)
if err1 != nil {
return d, errors.Trace(err1)
}
if y == 0 {
return d, nil
}
x := a.GetFloat64()
d.SetFloat64(x / y)
return d, nil
default:
// the scale of the result is the scale of the first operand plus
// the value of the div_precision_increment system variable (which is 4 by default)
// we will use 4 here
xa, err1 := a.ToDecimal(sc)
if err != nil {
return d, errors.Trace(err1)
}
xb, err1 := b.ToDecimal(sc)
if err1 != nil {
return d, errors.Trace(err1)
}
// division by zero return null
to := new(MyDecimal)
err = DecimalDiv(xa, xb, to, DivFracIncr)
if err != ErrDivByZero {
d.SetMysqlDecimal(to)
} else {
err = nil
}
return d, err
}
}
// ComputeMod computes the result of a mod b.
func ComputeMod(sc *stmtctx.StatementContext, a, b Datum) (d Datum, err error) {
switch a.Kind() {
case KindInt64:
x := a.GetInt64()
switch b.Kind() {
case KindInt64:
y := b.GetInt64()
if y == 0 {
return d, nil
}
d.SetInt64(x % y)
return d, nil
case KindUint64:
y := b.GetUint64()
if y == 0 {
return d, nil
} else if x < 0 {
d.SetInt64(-int64(uint64(-x) % y))
// first is int64, return int64.
return d, nil
}
d.SetInt64(int64(uint64(x) % y))
return d, nil
}
case KindUint64:
x := a.GetUint64()
switch b.Kind() {
case KindInt64:
y := b.GetInt64()
if y == 0 {
return d, nil
} else if y < 0 {
// first is uint64, return uint64.
d.SetUint64(x % uint64(-y))
return d, nil
}
d.SetUint64(x % uint64(y))
return d, nil
case KindUint64:
y := b.GetUint64()
if y == 0 {
return d, nil
}
d.SetUint64(x % y)
return d, nil
}
case KindFloat64:
x := a.GetFloat64()
switch b.Kind() {
case KindFloat64:
y := b.GetFloat64()
if y == 0 {
return d, nil
}
d.SetFloat64(math.Mod(x, y))
return d, nil
}
case KindMysqlDecimal:
x := a.GetMysqlDecimal()
switch b.Kind() {
case KindMysqlDecimal:
y := b.GetMysqlDecimal()
to := new(MyDecimal)
err = DecimalMod(x, y, to)
if err != ErrDivByZero {
d.SetMysqlDecimal(to)
} else {
// div by zero returns nil without error.
err = nil
}
return d, err
}
}
_, err = InvOp2(a.GetValue(), b.GetValue(), opcode.Mod)
return d, errors.Trace(err)
}
// ComputeIntDiv computes the result of a / b, both a and b are integer.
func ComputeIntDiv(sc *stmtctx.StatementContext, a, b Datum) (d Datum, err error) {
switch a.Kind() {
case KindInt64:
x := a.GetInt64()
switch b.Kind() {
case KindInt64:
y := b.GetInt64()
if y == 0 {
return d, nil
}
r, err1 := DivInt64(x, y)
d.SetInt64(r)
return d, errors.Trace(err1)
case KindUint64:
y := b.GetUint64()
if y == 0 {
return d, nil
}
r, err1 := DivIntWithUint(x, y)
d.SetUint64(r)
return d, errors.Trace(err1)
}
case KindUint64:
x := a.GetUint64()
switch b.Kind() {
case KindInt64:
y := b.GetInt64()
if y == 0 {
return d, nil
}
r, err1 := DivUintWithInt(x, y)
d.SetUint64(r)
return d, errors.Trace(err1)
case KindUint64:
y := b.GetUint64()
if y == 0 {
return d, nil
}
d.SetUint64(x / y)
return d, nil
}
}
// If either is not integer, use decimal to calculate
x, err := a.ToDecimal(sc)
if err != nil {
return d, errors.Trace(err)
}
y, err := b.ToDecimal(sc)
if err != nil {
return d, errors.Trace(err)
}
to := new(MyDecimal)
err = DecimalDiv(x, y, to, DivFracIncr)
if err == ErrDivByZero {
return d, nil
}
iVal, err1 := to.ToInt()
if err == nil {
err = err1
}
d.SetInt64(iVal)
return d, nil
}
// decimal2RoundUint converts a MyDecimal to an uint64 after rounding.
func decimal2RoundUint(x *MyDecimal) (uint64, error) {
roundX := new(MyDecimal)
err := x.Round(roundX, 0, ModeHalfEven)
if err != nil {
return 0, errors.Trace(err)
}
var uintX uint64
if roundX.IsNegative() {
var intX int64
intX, err = roundX.ToInt()
if err != nil && err != ErrTruncated {
return 0, errors.Trace(err)
}
uintX = uint64(intX)
} else {
uintX, err = roundX.ToUint()
if err != nil && err != ErrTruncated {
return 0, errors.Trace(err)
}
}
return uintX, nil
}
// ComputeBitAnd computes the result of a & b.
func ComputeBitAnd(sc *stmtctx.StatementContext, a, b Datum) (d Datum, err error) {
aKind, bKind := a.Kind(), b.Kind()
if (aKind == KindInt64 || aKind == KindUint64) && (bKind == KindInt64 || bKind == KindUint64) {
d.SetUint64(a.GetUint64() & b.GetUint64())
return
}
// If either is not integer, we round the operands and then use uint64 to calculate.
x, err := convertNonInt2RoundUint64(sc, a)
if err != nil {
return d, errors.Trace(err)
}
y, err := convertNonInt2RoundUint64(sc, b)
if err != nil {
return d, errors.Trace(err)
}
d.SetUint64(x & y)
return d, nil
}
// ComputeBitOr computes the result of a | b.
func ComputeBitOr(sc *stmtctx.StatementContext, a, b Datum) (d Datum, err error) {
aKind, bKind := a.Kind(), b.Kind()
if (aKind == KindInt64 || aKind == KindUint64) && (bKind == KindInt64 || bKind == KindUint64) {
d.SetUint64(a.GetUint64() | b.GetUint64())
return
}
// If either is not integer, we round the operands and then use uint64 to calculate.
x, err := convertNonInt2RoundUint64(sc, a)
if err != nil {
return d, errors.Trace(err)
}
y, err := convertNonInt2RoundUint64(sc, b)
if err != nil {
return d, errors.Trace(err)
}
d.SetUint64(x | y)
return d, nil
}
// ComputeBitNeg computes the result of ~a.
func ComputeBitNeg(sc *stmtctx.StatementContext, a Datum) (d Datum, err error) {
aKind := a.Kind()
if aKind == KindInt64 || aKind == KindUint64 {
d.SetUint64(^a.GetUint64())
return
}
// If either is not integer, we round the operands and then use uint64 to calculate.
x, err := convertNonInt2RoundUint64(sc, a)
if err != nil {
return d, errors.Trace(err)
}
d.SetUint64(^x)
return d, nil
}
// ComputeBitXor computes the result of a ^ b.
func ComputeBitXor(sc *stmtctx.StatementContext, a, b Datum) (d Datum, err error) {
aKind, bKind := a.Kind(), b.Kind()
if (aKind == KindInt64 || aKind == KindUint64) && (bKind == KindInt64 || bKind == KindUint64) {
d.SetUint64(a.GetUint64() ^ b.GetUint64())
return
}
// If either is not integer, we round the operands and then use uint64 to calculate.
x, err := convertNonInt2RoundUint64(sc, a)
if err != nil {
return d, errors.Trace(err)
}
y, err := convertNonInt2RoundUint64(sc, b)
if err != nil {
return d, errors.Trace(err)
}
d.SetUint64(x ^ y)
return d, nil
}
// ComputeLeftShift computes the result of a >> b.
func ComputeLeftShift(sc *stmtctx.StatementContext, a, b Datum) (d Datum, err error) {
aKind, bKind := a.Kind(), b.Kind()
if (aKind == KindInt64 || aKind == KindUint64) && (bKind == KindInt64 || bKind == KindUint64) {
d.SetUint64(a.GetUint64() << b.GetUint64())
return
}
// If either is not integer, we round the operands and then use uint64 to calculate.
x, err := convertNonInt2RoundUint64(sc, a)
if err != nil {
return d, errors.Trace(err)
}
y, err := convertNonInt2RoundUint64(sc, b)
if err != nil {
return d, errors.Trace(err)
}
d.SetUint64(x << y)
return d, nil
}
// ComputeRightShift computes the result of a << b.
func ComputeRightShift(sc *stmtctx.StatementContext, a, b Datum) (d Datum, err error) {
aKind, bKind := a.Kind(), b.Kind()
if (aKind == KindInt64 || aKind == KindUint64) && (bKind == KindInt64 || bKind == KindUint64) {
d.SetUint64(a.GetUint64() >> b.GetUint64())
return
}
// If either is not integer, we round the operands and then use uint64 to calculate.
x, err := convertNonInt2RoundUint64(sc, a)
if err != nil {
return d, errors.Trace(err)
}
y, err := convertNonInt2RoundUint64(sc, b)
if err != nil {
return d, errors.Trace(err)
}
d.SetUint64(x >> y)
return d, nil
}
// convertNonInt2RoundUint64 converts a non-integer to an uint64
func convertNonInt2RoundUint64(sc *stmtctx.StatementContext, x Datum) (d uint64, err error) {
decimalX, err := x.ToDecimal(sc)
if err != nil {
return d, errors.Trace(err)
}
d, err = decimal2RoundUint(decimalX)
if err != nil {
return d, errors.Trace(err)
}
return
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。