# PyImageSearch-CV-DL-CrashCourse **Repository Path**: EricRobots/PyImageSearch-CV-DL-CrashCourse ## Basic Information - **Project Name**: PyImageSearch-CV-DL-CrashCourse - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2019-06-23 - **Last Updated**: 2024-09-29 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # PyImageSearch CV/DL CrashCourse Repository for PyImageSearch Crash Course on Computer Vision and Deep Learning * URL to course: ## Day 1: Face detection with OpenCV and Deep Learning * **Link:** * **Folder:** 01-deep-learning-face-detection **Commands used:** * **Object detection with Images:** > *$ python detect_faces.py --image images/rooster.jpg --prototxt model/deploy.prototxt.txt --model model/res10_300x300_ssd_iter_140000.caffemodel* * **Object detection with Webcam:** > *$ python detect_faces_video.py --prototxt model/deploy.prototxt.txt --model model/res10_300x300_ssd_iter_140000.caffemodel* ## Day 2: OpenCV Tutorial: A Guide to Learn OpenCV * **Link:** * **Folder:** 02-opencv-tutorial **Commands used:** * **OpenCV tutorial:** > *$ python opencv_tutorial_01.py* * **Counting objects:** > *$ python opencv_tutorial_02.py --image images/tetris_blocks.png* ## Day 3: Document scanner * **Link:** * **Folder:** 03-document-scanner **Commands used:** > *$ python scan.py --image images/page.jpg* ## Day 4: Bubble sheet multiple choice scanner and test grader using OMR * **Link:** * **Folder:** 04-omr-test-grader **Commands used:** > *$ python test_grader.py --image images/test_01.png* ## Day 5: Ball Tracking with OpenCV * **Link:** * **Folder:** 05-ball-tracking **Commands used:** * **Using Video:** > *$ python ball_tracking.py --video ball_tracking_example.mp4* * **Using Webcam:** > *$ python ball_tracking.py* (**Note:** To see any results, you will need a green object with the same HSV color range was used in this demo) ## Day 6: Measuring size of objects in an image with OpenCV * **Link:** * **Folder:** 06-size-of-objects **Commands used:** > *$ python object_size.py --image images/example_01.png --width 0.955* > *$ python object_size.py --image images/example_02.png --width 0.955* > *$ python object_size.py --image images/example_03.png --width 3.5* ## Day 8: Facial landmarks with dlib, OpenCV, and Python * **Link:** * **Folder:** 08-facial_landmarks **Commands used:** > *$ python facial_landmarks.py --shape-predictor model/shape_predictor_68_face_landmarks.dat --image images/example_01.jpg* > *$ python facial_landmarks.py --shape-predictor model/shape_predictor_68_face_landmarks.dat --image images/example_02.jpg* > *$ python facial_landmarks.py --shape-predictor model/shape_predictor_68_face_landmarks.dat --image images/example_03.jpg* ## Day 9: Eye blink detection with OpenCV, Python, and dlib * **Link:** * **Folder:** 09-blink-detection **Commands used:** > *$ python detect_blinks.py --shape-predictor model/shape_predictor_68_face_landmarks.dat --video videos/blink_detection_demo.mp4* ## Day 10: Drowsiness detection with OpenCV * **Link:** * **Folder:** 10-detect_drowsiness **Commands used:** > *$ python detect_drowsiness.py --shape-predictor model/shape_predictor_68_face_landmarks.dat --alarm sounds/alarm.wav* ## Day 12: A simple neural network with Python and Keras * **Link:** * **Folder:** 12-simple-neural-network **Note:** Create a folder structure called **/kaggle_dogs_vs_cats/train**, download the training dataset [Kaggle-Dogs vs. Cats](https://www.kaggle.com/c/dogs-vs-cats/data) and put the images into **train** folder. **Command used - Training:** > *$ python simple_neural_network.py --dataset kaggle_dogs_vs_cats --model output/simple_neural_network.hdf5* **Command used - Test:** > *$ python test_network.py --model output/simple_neural_network.hdf5 --test-images test_images* ## Day 13: Deep Learning with OpenCV * **Link:** * **Folder:** 13-deep-learning-opencv **Commands used:** > *$ python deep_learning_with_opencv.py --image images/jemma.png --prototxt model/bvlc_googlenet.prototxt --model model/bvlc_googlenet.caffemodel --labels model/synset_words.txt* > *$ python deep_learning_with_opencv.py --image images/traffic_light.png --prototxt model/bvlc_googlenet.prototxt --model model/bvlc_googlenet.caffemodel --labels model/synset_words.txt* > *$ python deep_learning_with_opencv.py --image images/eagle.png --prototxt model/bvlc_googlenet.prototxt --model model/bvlc_googlenet.caffemodel --labels model/synset_words.txt* > *$ python deep_learning_with_opencv.py --image images/vending_machine.png --prototxt model/bvlc_googlenet.prototxt --model model/bvlc_googlenet.caffemodel --labels model/synset_words.txt* ## Day 14: How to (quickly) build a deep learning image dataset * **Link:** * **Folder:** 14-search_bing_api **Commands used:** > *$ python search_bing_api.py --query "pokemon_class_to_search" --output dataset/pokemon_class_to_search* ## Day 15: Keras and Convolutional Neural Networks (CNNs) * **Link:** * **Folder:** 15-cnn-keras **Command used - Training:** > *$ python train.py --dataset dataset --model pokedex.model --labelbin lb.pickle* **Command used - Testing:** > *$ python classify.py --model pokedex.model --labelbin lb.pickle --image examples/charmander_counter.png* > *$ python classify.py --model pokedex.model --labelbin lb.pickle --image examples/bulbasaur_plush.png* > *$ python classify.py --model pokedex.model --labelbin lb.pickle --image examples/mewtwo_toy.png* > *$ python classify.py --model pokedex.model --labelbin lb.pickle --image examples/pikachu_toy.png* > *$ python classify.py --model pokedex.model --labelbin lb.pickle --image examples/squirtle_plush.png* > *$ python classify.py --model pokedex.model --labelbin lb.pickle --image examples/charmander_hidden.png* ## Day 16: Real-time object detection with deep learning and OpenCV * **Link:** * **Folder:** 16-real-time-object-detection **Commands used:** > *$ python real_time_object_detection.py --prototxt model/MobileNetSSD_deploy.prototxt.txt --model model/MobileNetSSD_deploy.caffemodel* --- **Credits to Adrian Rosebrock on **