# PyImageSearch-CV-DL-CrashCourse
**Repository Path**: EricRobots/PyImageSearch-CV-DL-CrashCourse
## Basic Information
- **Project Name**: PyImageSearch-CV-DL-CrashCourse
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 1
- **Forks**: 0
- **Created**: 2019-06-23
- **Last Updated**: 2024-09-29
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# PyImageSearch CV/DL CrashCourse
Repository for PyImageSearch Crash Course on Computer Vision and Deep Learning
* URL to course:
## Day 1: Face detection with OpenCV and Deep Learning
* **Link:**
* **Folder:** 01-deep-learning-face-detection
**Commands used:**
* **Object detection with Images:**
> *$ python detect_faces.py --image images/rooster.jpg --prototxt model/deploy.prototxt.txt --model model/res10_300x300_ssd_iter_140000.caffemodel*
* **Object detection with Webcam:**
> *$ python detect_faces_video.py --prototxt model/deploy.prototxt.txt --model model/res10_300x300_ssd_iter_140000.caffemodel*
## Day 2: OpenCV Tutorial: A Guide to Learn OpenCV
* **Link:**
* **Folder:** 02-opencv-tutorial
**Commands used:**
* **OpenCV tutorial:**
> *$ python opencv_tutorial_01.py*
* **Counting objects:**
> *$ python opencv_tutorial_02.py --image images/tetris_blocks.png*
## Day 3: Document scanner
* **Link:**
* **Folder:** 03-document-scanner
**Commands used:**
> *$ python scan.py --image images/page.jpg*
## Day 4: Bubble sheet multiple choice scanner and test grader using OMR
* **Link:**
* **Folder:** 04-omr-test-grader
**Commands used:**
> *$ python test_grader.py --image images/test_01.png*
## Day 5: Ball Tracking with OpenCV
* **Link:**
* **Folder:** 05-ball-tracking
**Commands used:**
* **Using Video:**
> *$ python ball_tracking.py --video ball_tracking_example.mp4*
* **Using Webcam:**
> *$ python ball_tracking.py* (**Note:** To see any results, you will need a green object with the same HSV color range was used in this demo)
## Day 6: Measuring size of objects in an image with OpenCV
* **Link:**
* **Folder:** 06-size-of-objects
**Commands used:**
> *$ python object_size.py --image images/example_01.png --width 0.955*
> *$ python object_size.py --image images/example_02.png --width 0.955*
> *$ python object_size.py --image images/example_03.png --width 3.5*
## Day 8: Facial landmarks with dlib, OpenCV, and Python
* **Link:**
* **Folder:** 08-facial_landmarks
**Commands used:**
> *$ python facial_landmarks.py --shape-predictor model/shape_predictor_68_face_landmarks.dat --image images/example_01.jpg*
> *$ python facial_landmarks.py --shape-predictor model/shape_predictor_68_face_landmarks.dat --image images/example_02.jpg*
> *$ python facial_landmarks.py --shape-predictor model/shape_predictor_68_face_landmarks.dat --image images/example_03.jpg*
## Day 9: Eye blink detection with OpenCV, Python, and dlib
* **Link:**
* **Folder:** 09-blink-detection
**Commands used:**
> *$ python detect_blinks.py --shape-predictor model/shape_predictor_68_face_landmarks.dat --video videos/blink_detection_demo.mp4*
## Day 10: Drowsiness detection with OpenCV
* **Link:**
* **Folder:** 10-detect_drowsiness
**Commands used:**
> *$ python detect_drowsiness.py --shape-predictor model/shape_predictor_68_face_landmarks.dat --alarm sounds/alarm.wav*
## Day 12: A simple neural network with Python and Keras
* **Link:**
* **Folder:** 12-simple-neural-network
**Note:** Create a folder structure called **/kaggle_dogs_vs_cats/train**, download the training dataset [Kaggle-Dogs vs. Cats](https://www.kaggle.com/c/dogs-vs-cats/data) and put the images into **train** folder.
**Command used - Training:**
> *$ python simple_neural_network.py --dataset kaggle_dogs_vs_cats --model output/simple_neural_network.hdf5*
**Command used - Test:**
> *$ python test_network.py --model output/simple_neural_network.hdf5 --test-images test_images*
## Day 13: Deep Learning with OpenCV
* **Link:**
* **Folder:** 13-deep-learning-opencv
**Commands used:**
> *$ python deep_learning_with_opencv.py --image images/jemma.png --prototxt model/bvlc_googlenet.prototxt --model model/bvlc_googlenet.caffemodel --labels model/synset_words.txt*
> *$ python deep_learning_with_opencv.py --image images/traffic_light.png --prototxt model/bvlc_googlenet.prototxt --model model/bvlc_googlenet.caffemodel --labels model/synset_words.txt*
> *$ python deep_learning_with_opencv.py --image images/eagle.png --prototxt model/bvlc_googlenet.prototxt --model model/bvlc_googlenet.caffemodel --labels model/synset_words.txt*
> *$ python deep_learning_with_opencv.py --image images/vending_machine.png --prototxt model/bvlc_googlenet.prototxt --model model/bvlc_googlenet.caffemodel --labels model/synset_words.txt*
## Day 14: How to (quickly) build a deep learning image dataset
* **Link:**
* **Folder:** 14-search_bing_api
**Commands used:**
> *$ python search_bing_api.py --query "pokemon_class_to_search" --output dataset/pokemon_class_to_search*
## Day 15: Keras and Convolutional Neural Networks (CNNs)
* **Link:**
* **Folder:** 15-cnn-keras
**Command used - Training:**
> *$ python train.py --dataset dataset --model pokedex.model --labelbin lb.pickle*
**Command used - Testing:**
> *$ python classify.py --model pokedex.model --labelbin lb.pickle --image examples/charmander_counter.png*
> *$ python classify.py --model pokedex.model --labelbin lb.pickle --image examples/bulbasaur_plush.png*
> *$ python classify.py --model pokedex.model --labelbin lb.pickle --image examples/mewtwo_toy.png*
> *$ python classify.py --model pokedex.model --labelbin lb.pickle --image examples/pikachu_toy.png*
> *$ python classify.py --model pokedex.model --labelbin lb.pickle --image examples/squirtle_plush.png*
> *$ python classify.py --model pokedex.model --labelbin lb.pickle --image examples/charmander_hidden.png*
## Day 16: Real-time object detection with deep learning and OpenCV
* **Link:**
* **Folder:** 16-real-time-object-detection
**Commands used:**
> *$ python real_time_object_detection.py --prototxt model/MobileNetSSD_deploy.prototxt.txt --model model/MobileNetSSD_deploy.caffemodel*
---
**Credits to Adrian Rosebrock on **