Repository for PyImageSearch Crash Course on Computer Vision and Deep Learning
Commands used:
Object detection with Images:
$ python detect_faces.py --image images/rooster.jpg --prototxt model/deploy.prototxt.txt --model model/res10_300x300_ssd_iter_140000.caffemodel
Object detection with Webcam:
$ python detect_faces_video.py --prototxt model/deploy.prototxt.txt --model model/res10_300x300_ssd_iter_140000.caffemodel
Commands used:
$ python opencv_tutorial_01.py
$ python opencv_tutorial_02.py --image images/tetris_blocks.png
Commands used:
$ python scan.py --image images/page.jpg
Commands used:
$ python test_grader.py --image images/test_01.png
Commands used:
Using Video:
$ python ball_tracking.py --video ball_tracking_example.mp4
Using Webcam:
$ python ball_tracking.py (Note: To see any results, you will need a green object with the same HSV color range was used in this demo)
Commands used:
$ python object_size.py --image images/example_01.png --width 0.955
$ python object_size.py --image images/example_02.png --width 0.955
$ python object_size.py --image images/example_03.png --width 3.5
Commands used:
$ python facial_landmarks.py --shape-predictor model/shape_predictor_68_face_landmarks.dat --image images/example_01.jpg
$ python facial_landmarks.py --shape-predictor model/shape_predictor_68_face_landmarks.dat --image images/example_02.jpg
$ python facial_landmarks.py --shape-predictor model/shape_predictor_68_face_landmarks.dat --image images/example_03.jpg
Commands used:
$ python detect_blinks.py --shape-predictor model/shape_predictor_68_face_landmarks.dat --video videos/blink_detection_demo.mp4
Commands used:
$ python detect_drowsiness.py --shape-predictor model/shape_predictor_68_face_landmarks.dat --alarm sounds/alarm.wav
Note: Create a folder structure called /kaggle_dogs_vs_cats/train, download the training dataset Kaggle-Dogs vs. Cats and put the images into train folder.
Command used - Training:
$ python simple_neural_network.py --dataset kaggle_dogs_vs_cats --model output/simple_neural_network.hdf5
Command used - Test:
$ python test_network.py --model output/simple_neural_network.hdf5 --test-images test_images
Commands used:
$ python deep_learning_with_opencv.py --image images/jemma.png --prototxt model/bvlc_googlenet.prototxt --model model/bvlc_googlenet.caffemodel --labels model/synset_words.txt
$ python deep_learning_with_opencv.py --image images/traffic_light.png --prototxt model/bvlc_googlenet.prototxt --model model/bvlc_googlenet.caffemodel --labels model/synset_words.txt
$ python deep_learning_with_opencv.py --image images/eagle.png --prototxt model/bvlc_googlenet.prototxt --model model/bvlc_googlenet.caffemodel --labels model/synset_words.txt
$ python deep_learning_with_opencv.py --image images/vending_machine.png --prototxt model/bvlc_googlenet.prototxt --model model/bvlc_googlenet.caffemodel --labels model/synset_words.txt
Commands used:
$ python search_bing_api.py --query "pokemon_class_to_search" --output dataset/pokemon_class_to_search
Command used - Training:
$ python train.py --dataset dataset --model pokedex.model --labelbin lb.pickle
Command used - Testing:
$ python classify.py --model pokedex.model --labelbin lb.pickle --image examples/charmander_counter.png
$ python classify.py --model pokedex.model --labelbin lb.pickle --image examples/bulbasaur_plush.png
$ python classify.py --model pokedex.model --labelbin lb.pickle --image examples/mewtwo_toy.png
$ python classify.py --model pokedex.model --labelbin lb.pickle --image examples/pikachu_toy.png
$ python classify.py --model pokedex.model --labelbin lb.pickle --image examples/squirtle_plush.png
$ python classify.py --model pokedex.model --labelbin lb.pickle --image examples/charmander_hidden.png
Commands used:
$ python real_time_object_detection.py --prototxt model/MobileNetSSD_deploy.prototxt.txt --model model/MobileNetSSD_deploy.caffemodel
Credits to Adrian Rosebrock on http://www.pyimagesearch.com
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。