58 Star 280 Fork 3

腾讯开源/ncnn

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
test_convolution_2.cpp 7.78 KB
一键复制 编辑 原始数据 按行查看 历史
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "testutil.h"
static int test_convolution(int w, int h, int c, int outch, int kernel, int dilation, int stride, int pad, int bias)
{
ncnn::Mat a = RandomMat(w, h, c);
ncnn::ParamDict pd;
pd.set(0, outch);
pd.set(1, kernel);
pd.set(2, dilation);
pd.set(3, stride);
pd.set(4, pad);
pd.set(5, bias);
pd.set(6, outch * c * kernel * kernel);
int activation_type = RAND() % 7; // 0 1 2 3 4 5 6
ncnn::Mat activation_params(2);
activation_params[0] = (activation_type == 6) ? RandomFloat(0, 1) : RandomFloat(-1, 0); // alpha
activation_params[1] = RandomFloat(0, 1); // beta
pd.set(9, activation_type);
pd.set(10, activation_params);
std::vector<ncnn::Mat> weights(bias ? 2 : 1);
weights[0] = RandomMat(outch * c * kernel * kernel);
if (bias)
weights[1] = RandomMat(outch);
Randomize(a, -1, 1);
Randomize(weights[0], -0.6, 0.6);
float epsilon = 0.001;
int ret = test_layer("Convolution", pd, weights, a, epsilon);
if (ret != 0)
{
fprintf(stderr, "test_convolution failed w=%d h=%d c=%d outch=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d act=%d actparams=[%f,%f]\n", w, h, c, outch, kernel, dilation, stride, pad, bias, activation_type, activation_params[0], activation_params[1]);
return ret;
}
{
ncnn::Option opt;
opt.num_threads = 1;
opt.use_packing_layout = true;
opt.use_fp16_packed = false;
opt.use_fp16_storage = false;
opt.use_fp16_arithmetic = false;
opt.use_bf16_storage = false;
opt.use_shader_pack8 = false;
opt.use_sgemm_convolution = false;
opt.use_winograd_convolution = false;
ret = test_layer_opt("Convolution", pd, weights, opt, a, epsilon);
if (ret != 0)
{
fprintf(stderr, "test_convolution failed w=%d h=%d c=%d outch=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d act=%d actparams=[%f,%f]\n", w, h, c, outch, kernel, dilation, stride, pad, bias, activation_type, activation_params[0], activation_params[1]);
return ret;
}
}
{
ncnn::Option opt;
opt.num_threads = 1;
opt.use_packing_layout = true;
opt.use_fp16_packed = true;
opt.use_fp16_storage = true;
opt.use_fp16_arithmetic = true;
opt.use_bf16_storage = true;
opt.use_shader_pack8 = true;
opt.use_sgemm_convolution = false;
opt.use_winograd_convolution = false;
ret = test_layer_opt("Convolution", pd, weights, opt, a, epsilon);
if (ret != 0)
{
fprintf(stderr, "test_convolution failed w=%d h=%d c=%d outch=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d act=%d actparams=[%f,%f]\n", w, h, c, outch, kernel, dilation, stride, pad, bias, activation_type, activation_params[0], activation_params[1]);
return ret;
}
}
{
ncnn::Option opt;
opt.num_threads = 1;
opt.use_a53_a55_optimized_kernel = true;
ret = test_layer_opt("Convolution", pd, weights, opt, a, epsilon);
if (ret != 0)
{
fprintf(stderr, "test_convolution failed w=%d h=%d c=%d outch=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d act=%d actparams=[%f,%f]\n", w, h, c, outch, kernel, dilation, stride, pad, bias, activation_type, activation_params[0], activation_params[1]);
return ret;
}
}
return ret;
}
static int test_convolution_0()
{
return 0
|| test_convolution(7, 5, 1, 4, 3, 1, 1, 1, 1)
|| test_convolution(14, 5, 1, 4, 3, 1, 2, 1, 1)
|| test_convolution(11, 5, 2, 12, 2, 2, 2, 1, 1)
|| test_convolution(15, 11, 4, 4, 3, 1, 1, 1, 1)
|| test_convolution(15, 11, 8, 8, 3, 1, 1, 1, 1)
|| test_convolution(11, 11, 8, 16, 3, 1, 1, 1, 1)
|| test_convolution(13, 16, 16, 24, 3, 1, 1, 1, 1)
|| test_convolution(20, 19, 24, 24, 3, 1, 1, 1, 1)
|| test_convolution(8, 8, 16, 24, 3, 1, 1, 1, 0)
|| test_convolution(4, 8, 16, 24, 3, 1, 1, 1, 1)
|| test_convolution(4, 20, 16, 24, 3, 1, 1, 1, 0)
|| test_convolution(6, 7, 64, 64, 3, 1, 2, 0, 1)
|| test_convolution(15, 17, 24, 32, 1, 1, 1, 0, 0)
|| test_convolution(15, 17, 24, 32, 1, 1, 2, 0, 1)
|| test_convolution(15, 17, 24, 32, 3, 1, 2, 0, 1)
|| test_convolution(15, 17, 32, 24, 1, 1, 1, 0, 0)
|| test_convolution(15, 17, 32, 24, 1, 1, 2, 0, 1)
|| test_convolution(15, 17, 32, 24, 3, 1, 2, 0, 1)
|| test_convolution(15, 17, 32, 28, 1, 1, 1, 0, 0)
|| test_convolution(15, 17, 32, 28, 1, 1, 2, 0, 1)
|| test_convolution(15, 17, 32, 28, 3, 1, 2, 0, 1)
|| test_convolution(15, 17, 26, 32, 1, 1, 1, 0, 0)
|| test_convolution(15, 17, 26, 32, 1, 1, 2, 0, 1)
|| test_convolution(15, 17, 26, 32, 3, 1, 2, 0, 1)
|| test_convolution(15, 17, 32, 26, 1, 1, 1, 0, 0)
|| test_convolution(15, 17, 32, 26, 1, 1, 2, 0, 1)
|| test_convolution(15, 17, 32, 26, 3, 1, 2, 0, 1)
|| test_convolution(30, 30, 32, 26, 3, 1, 1, 1, 0)
|| test_convolution(12, 18, 8, 16, 3, 1, 1, 1, 1)
|| test_convolution(42, 18, 32, 160, 3, 1, 1, 1, 1)
|| test_convolution(12, 18, 32, 160, 3, 1, 1, 1, 1)
|| test_convolution(12, 18, 4, 12, 3, 1, 1, 1, 1)
|| test_convolution(42, 18, 28, 140, 3, 1, 1, 1, 1)
|| test_convolution(12, 18, 28, 140, 3, 1, 1, 1, 1)
|| test_convolution(3, 3, 47, 47, 3, 1, 1, 0, 1)
|| test_convolution(5, 5, 40, 40, 3, 1, 1, 0, 0)
|| test_convolution(13, 13, 53, 47, 3, 1, 1, 0, 1)
|| test_convolution(20, 26, 47, 47, 3, 1, 1, 0, 0)
|| test_convolution(12, 12, 47, 53, 3, 1, 1, 1, 0)
|| test_convolution(23, 23, 53, 53, 3, 1, 1, 1, 0)
|| test_convolution(26, 34, 47, 47, 3, 1, 1, 2, 0)
|| test_convolution(52, 40, 31, 31, 3, 1, 1, 2, 0)
|| test_convolution(6, 7, 7, 17, 2, 2, 2, 1, 1)
|| test_convolution(8, 9, 3, 17, 5, 1, 1, 2, 1)
|| test_convolution(9, 7, 19, 13, 1, 2, 2, 0, 0)
|| test_convolution(15, 12, 19, 3, 4, 1, 2, 2, 1)
|| test_convolution(14, 14, 24, 31, 5, 1, 2, 2, 1)
|| test_convolution(12, 12, 20, 15, 6, 1, 1, 0, 0)
|| test_convolution(11, 10, 12, 7, 4, 2, 1, 2, 1)
|| test_convolution(1, 11, 48, 26, 7, 1, 2, 3, 1);
}
static int test_convolution_1()
{
return 0
|| test_convolution(7, 6, 135, 31, 3, 1, 1, 1, 0)
|| test_convolution(8, 7, 31, 135, 3, 1, 1, 1, 0)
|| test_convolution(9, 7, 135, 7, 3, 1, 1, 0, 0)
|| test_convolution(9, 8, 140, 4, 3, 1, 1, 0, 0)
|| test_convolution(8, 9, 160, 6, 3, 1, 1, 0, 0)
|| test_convolution(11, 9, 7, 135, 3, 1, 1, 0, 0)
|| test_convolution(10, 9, 4, 140, 3, 1, 1, 0, 0)
|| test_convolution(9, 10, 6, 160, 3, 1, 1, 0, 0);
}
int main()
{
SRAND(7767517);
return test_convolution_0() || test_convolution_1();
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
C/C++
1
https://gitee.com/Tencent/ncnn.git
git@gitee.com:Tencent/ncnn.git
Tencent
ncnn
ncnn
master

搜索帮助