代码拉取完成,页面将自动刷新
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "testutil.h"
static int test_convolutiondepthwise(int w, int h, int c, int outch, int kernel, int dilation, int stride, int pad, int bias, int group)
{
ncnn::Mat a = RandomMat(w, h, c);
ncnn::ParamDict pd;
pd.set(0, outch);
pd.set(1, kernel);
pd.set(2, dilation);
pd.set(3, stride);
pd.set(4, pad);
pd.set(5, bias);
pd.set(6, outch / group * c / group * kernel * kernel * group);
pd.set(7, group);
int activation_type = RAND() % 7; // 0 1 2 3 4 5 6
ncnn::Mat activation_params(2);
activation_params[0] = (activation_type == 6) ? RandomFloat(0, 1) : RandomFloat(-1, 0); // alpha
activation_params[1] = RandomFloat(0, 1); // beta
pd.set(9, activation_type);
pd.set(10, activation_params);
std::vector<ncnn::Mat> weights(2);
weights[0] = RandomMat(outch / group * c / group * kernel * kernel * group);
weights[1] = RandomMat(outch);
int ret = test_layer("ConvolutionDepthWise", pd, weights, a);
if (ret != 0)
{
fprintf(stderr, "test_convolutiondepthwise failed w=%d h=%d c=%d outch=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d group=%d act=%d actparams=[%f,%f]\n", w, h, c, outch, kernel, dilation, stride, pad, bias, group, activation_type, activation_params[0], activation_params[1]);
}
return ret;
}
static int test_convolutiondepthwise_0()
{
static const int kdsp[16][4] = {
{1, 1, 1, 0},
{1, 1, 2, 0},
{2, 1, 1, 1},
{2, 1, 2, -233},
{3, 1, 1, 1},
{3, 1, 2, 1},
{3, 2, 1, 1},
{4, 1, 1, 2},
{4, 1, 2, -233},
{4, 2, 1, -234},
{5, 1, 1, -234},
{5, 1, 2, 2},
{5, 2, 2, 2},
{7, 1, 1, 3},
{7, 1, 2, 3},
{7, 2, 1, -233},
};
for (int i = 0; i < 16; i++)
{
const int k = kdsp[i][0];
const int d = kdsp[i][1];
const int s = kdsp[i][2];
const int p = kdsp[i][3];
int ret = 0
|| test_convolutiondepthwise(15, 7, 1, 1, k, d, s, p, 1, 1)
|| test_convolutiondepthwise(15, 7, 2, 2, k, d, s, p, 0, 1)
|| test_convolutiondepthwise(15, 7, 2, 2, k, d, s, p, 1, 2)
|| test_convolutiondepthwise(15, 7, 3, 3, k, d, s, p, 0, 3)
|| test_convolutiondepthwise(15, 7, 4, 2, k, d, s, p, 1, 2)
|| test_convolutiondepthwise(15, 7, 4, 4, k, d, s, p, 0, 4)
|| test_convolutiondepthwise(15, 7, 7, 7, k, d, s, p, 1, 7)
|| test_convolutiondepthwise(15, 7, 8, 8, k, d, s, p, 0, 2)
|| test_convolutiondepthwise(15, 7, 8, 8, k, d, s, p, 1, 8)
|| test_convolutiondepthwise(15, 7, 12, 12, k, d, s, p, 0, 4)
|| test_convolutiondepthwise(15, 7, 15, 15, k, d, s, p, 1, 15)
|| test_convolutiondepthwise(15, 7, 16, 8, k, d, s, p, 0, 2)
|| test_convolutiondepthwise(15, 7, 16, 16, k, d, s, p, 1, 16)
|| test_convolutiondepthwise(18, 17, 1, 1, k, d, s, p, 1, 1)
|| test_convolutiondepthwise(18, 17, 2, 2, k, d, s, p, 0, 1)
|| test_convolutiondepthwise(18, 17, 2, 2, k, d, s, p, 1, 2)
|| test_convolutiondepthwise(18, 17, 3, 3, k, d, s, p, 0, 3)
|| test_convolutiondepthwise(18, 17, 4, 2, k, d, s, p, 1, 2)
|| test_convolutiondepthwise(18, 17, 4, 4, k, d, s, p, 0, 4)
|| test_convolutiondepthwise(18, 17, 7, 7, k, d, s, p, 1, 7)
|| test_convolutiondepthwise(18, 17, 8, 8, k, d, s, p, 0, 2)
|| test_convolutiondepthwise(18, 17, 8, 8, k, d, s, p, 1, 8)
|| test_convolutiondepthwise(18, 17, 12, 12, k, d, s, p, 0, 4)
|| test_convolutiondepthwise(18, 17, 15, 15, k, d, s, p, 1, 15)
|| test_convolutiondepthwise(18, 17, 16, 8, k, d, s, p, 0, 2)
|| test_convolutiondepthwise(18, 17, 16, 16, k, d, s, p, 1, 16)
|| test_convolutiondepthwise(25, 33, 1, 1, k, d, s, p, 1, 1)
|| test_convolutiondepthwise(25, 33, 2, 2, k, d, s, p, 0, 1)
|| test_convolutiondepthwise(25, 33, 2, 2, k, d, s, p, 1, 2)
|| test_convolutiondepthwise(25, 33, 3, 3, k, d, s, p, 0, 3)
|| test_convolutiondepthwise(25, 33, 4, 2, k, d, s, p, 1, 2)
|| test_convolutiondepthwise(25, 33, 4, 4, k, d, s, p, 0, 4)
|| test_convolutiondepthwise(25, 33, 7, 7, k, d, s, p, 1, 7)
|| test_convolutiondepthwise(25, 33, 8, 8, k, d, s, p, 0, 2)
|| test_convolutiondepthwise(25, 33, 8, 8, k, d, s, p, 1, 8)
|| test_convolutiondepthwise(25, 33, 12, 12, k, d, s, p, 0, 4)
|| test_convolutiondepthwise(25, 33, 15, 15, k, d, s, p, 1, 15)
|| test_convolutiondepthwise(25, 33, 16, 8, k, d, s, p, 0, 2)
|| test_convolutiondepthwise(25, 33, 16, 16, k, d, s, p, 1, 16);
if (ret != 0)
return -1;
}
return 0;
}
int main()
{
SRAND(7767517);
return test_convolutiondepthwise_0();
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。