58 Star 280 Fork 3

腾讯开源/ncnn

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
test_embed.cpp 2.96 KB
一键复制 编辑 原始数据 按行查看 历史
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "testutil.h"
static int test_embed(int words, int num_output, int input_dim, int bias)
{
ncnn::ParamDict pd;
pd.set(0, num_output);
pd.set(1, input_dim);
pd.set(2, bias);
pd.set(3, num_output * input_dim);
std::vector<ncnn::Mat> weights(bias ? 2 : 1);
weights[0] = RandomMat(num_output * input_dim);
if (bias)
weights[1] = RandomMat(num_output);
ncnn::Mat a(words);
RandomizeInt(a, 0, input_dim);
int ret = test_layer("Embed", pd, weights, a);
if (ret != 0)
{
fprintf(stderr, "test_embed failed words=%d num_output=%d input_dim=%d bias=%d\n", words, num_output, input_dim, bias);
}
return ret;
}
static int test_embed_0()
{
return 0
|| test_embed(128, 128, 128, 0)
|| test_embed(128, 128, 128, 1)
|| test_embed(127, 127, 127, 0)
|| test_embed(127, 127, 127, 1)
|| test_embed(124, 124, 124, 0)
|| test_embed(124, 124, 124, 1);
}
#if NCNN_INT8
static int test_embed_int8(int words, int num_output, int input_dim, int bias)
{
ncnn::ParamDict pd;
pd.set(0, num_output);
pd.set(1, input_dim);
pd.set(2, bias);
pd.set(3, num_output * input_dim);
pd.set(18, 2);
std::vector<ncnn::Mat> weights(bias ? 3 : 2);
weights[0] = RandomS8Mat(num_output * input_dim);
if (bias)
{
weights[1] = RandomMat(num_output);
weights[2] = RandomMat(1, 100.f, 200.f);
}
else
{
weights[1] = RandomMat(1, 100.f, 200.f);
}
ncnn::Mat a(words);
RandomizeInt(a, 0, input_dim);
int ret = test_layer("Embed", pd, weights, a);
if (ret != 0)
{
fprintf(stderr, "test_embed_int8 failed words=%d num_output=%d input_dim=%d bias=%d\n", words, num_output, input_dim, bias);
}
return ret;
}
static int test_embed_1()
{
return 0
|| test_embed_int8(128, 128, 128, 0)
|| test_embed_int8(128, 128, 128, 1)
|| test_embed_int8(127, 127, 127, 0)
|| test_embed_int8(127, 127, 127, 1)
|| test_embed_int8(124, 124, 124, 0)
|| test_embed_int8(124, 124, 124, 1);
}
#endif // NCNN_INT8
int main()
{
SRAND(7767517);
#if NCNN_INT8
return test_embed_0() || test_embed_1();
#else
return test_embed_0();
#endif
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
C/C++
1
https://gitee.com/Tencent/ncnn.git
git@gitee.com:Tencent/ncnn.git
Tencent
ncnn
ncnn
master

搜索帮助