58 Star 280 Fork 3

腾讯开源/ncnn

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
test_layernorm.cpp 4.98 KB
一键复制 编辑 原始数据 按行查看 历史
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "testutil.h"
static int test_layernorm(const ncnn::Mat& a, int affine_size, float eps, int affine)
{
ncnn::ParamDict pd;
pd.set(0, affine_size);
pd.set(1, eps);
pd.set(2, affine);
std::vector<ncnn::Mat> weights(2);
weights[0] = RandomMat(affine_size);
weights[1] = RandomMat(affine_size);
int ret = test_layer("LayerNorm", pd, weights, a);
if (ret != 0)
{
fprintf(stderr, "test_layernorm failed a.dims=%d a=(%d %d %d) affine_size=%d eps=%f affine=%d\n", a.dims, a.w, a.h, a.c, affine_size, eps, affine);
}
return ret;
}
static int test_layernorm_0()
{
return 0
|| test_layernorm(RandomMat(6, 4, 2), 6, 0.01f, 0)
|| test_layernorm(RandomMat(4, 5, 6), 4, 0.01f, 0)
|| test_layernorm(RandomMat(3, 3, 8), 3, 0.002f, 0)
|| test_layernorm(RandomMat(5, 6, 12), 5, 0.02f, 0)
|| test_layernorm(RandomMat(4, 7, 16), 4, 0.02f, 0)
|| test_layernorm(RandomMat(6, 7, 24), 6, 0.001f, 0)
|| test_layernorm(RandomMat(5, 8, 32), 5, 0.001f, 0)
|| test_layernorm(RandomMat(6, 4, 2), 6, 0.01f, 1)
|| test_layernorm(RandomMat(4, 5, 6), 4, 0.01f, 1)
|| test_layernorm(RandomMat(3, 3, 8), 3, 0.002f, 1)
|| test_layernorm(RandomMat(5, 6, 12), 5, 0.02f, 1)
|| test_layernorm(RandomMat(4, 7, 16), 4, 0.02f, 1)
|| test_layernorm(RandomMat(6, 7, 24), 6, 0.001f, 1)
|| test_layernorm(RandomMat(5, 8, 32), 5, 0.001f, 1);
}
static int test_layernorm_1()
{
return 0
|| test_layernorm(RandomMat(6, 4, 2), 24, 0.01f, 0)
|| test_layernorm(RandomMat(4, 5, 6), 20, 0.01f, 0)
|| test_layernorm(RandomMat(3, 3, 8), 9, 0.002f, 0)
|| test_layernorm(RandomMat(5, 6, 12), 30, 0.02f, 0)
|| test_layernorm(RandomMat(4, 7, 16), 28, 0.02f, 0)
|| test_layernorm(RandomMat(6, 7, 24), 42, 0.001f, 0)
|| test_layernorm(RandomMat(5, 8, 32), 40, 0.001f, 0)
|| test_layernorm(RandomMat(6, 4, 2), 24, 0.01f, 1)
|| test_layernorm(RandomMat(4, 5, 6), 20, 0.01f, 1)
|| test_layernorm(RandomMat(3, 3, 8), 9, 0.002f, 1)
|| test_layernorm(RandomMat(5, 6, 12), 30, 0.02f, 1)
|| test_layernorm(RandomMat(4, 7, 16), 28, 0.02f, 1)
|| test_layernorm(RandomMat(6, 7, 24), 42, 0.001f, 1)
|| test_layernorm(RandomMat(5, 8, 32), 40, 0.001f, 1);
}
static int test_layernorm_2()
{
return 0
|| test_layernorm(RandomMat(4, 2), 4, 0.01f, 0)
|| test_layernorm(RandomMat(5, 6), 5, 0.01f, 0)
|| test_layernorm(RandomMat(3, 8), 3, 0.002f, 0)
|| test_layernorm(RandomMat(6, 12), 6, 0.02f, 0)
|| test_layernorm(RandomMat(4, 16), 4, 0.02f, 0)
|| test_layernorm(RandomMat(7, 24), 7, 0.001f, 0)
|| test_layernorm(RandomMat(8, 32), 8, 0.001f, 0)
|| test_layernorm(RandomMat(4, 2), 4, 0.01f, 1)
|| test_layernorm(RandomMat(5, 6), 5, 0.01f, 1)
|| test_layernorm(RandomMat(3, 8), 3, 0.002f, 1)
|| test_layernorm(RandomMat(6, 12), 6, 0.02f, 1)
|| test_layernorm(RandomMat(4, 16), 4, 0.02f, 1)
|| test_layernorm(RandomMat(7, 24), 7, 0.001f, 1)
|| test_layernorm(RandomMat(8, 32), 8, 0.001f, 1);
}
static int test_layernorm_3()
{
return 0
|| test_layernorm(RandomMat(2), 2, 0.01f, 0)
|| test_layernorm(RandomMat(6), 6, 0.01f, 0)
|| test_layernorm(RandomMat(8), 8, 0.002f, 0)
|| test_layernorm(RandomMat(12), 12, 0.02f, 0)
|| test_layernorm(RandomMat(16), 16, 0.02f, 0)
|| test_layernorm(RandomMat(24), 24, 0.001f, 0)
|| test_layernorm(RandomMat(32), 32, 0.001f, 0)
|| test_layernorm(RandomMat(2), 2, 0.01f, 1)
|| test_layernorm(RandomMat(6), 6, 0.01f, 1)
|| test_layernorm(RandomMat(8), 8, 0.002f, 1)
|| test_layernorm(RandomMat(12), 12, 0.02f, 1)
|| test_layernorm(RandomMat(16), 16, 0.02f, 1)
|| test_layernorm(RandomMat(24), 24, 0.001f, 1)
|| test_layernorm(RandomMat(32), 32, 0.001f, 1);
}
int main()
{
SRAND(7767517);
return 0
|| test_layernorm_0()
|| test_layernorm_1()
|| test_layernorm_2()
|| test_layernorm_3();
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
C/C++
1
https://gitee.com/Tencent/ncnn.git
git@gitee.com:Tencent/ncnn.git
Tencent
ncnn
ncnn
master

搜索帮助