58 Star 280 Fork 3

腾讯开源/ncnn

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
test_packing.cpp 12.18 KB
一键复制 编辑 原始数据 按行查看 历史
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "testutil.h"
static int packing_cpu_naive(const ncnn::Mat& a, ncnn::Mat& b, int out_elempack)
{
ncnn::ParamDict pd;
pd.set(0, out_elempack);
std::vector<ncnn::Mat> weights(0);
ncnn::Option opt;
opt.num_threads = 1;
ncnn::Layer* op = ncnn::create_layer_naive("Packing");
op->load_param(pd);
ncnn::ModelBinFromMatArray mb(weights.data());
op->load_model(mb);
op->create_pipeline(opt);
op->forward(a, b, opt);
op->destroy_pipeline(opt);
delete op;
return 0;
}
static int test_packing_cpu_fp32(const ncnn::Mat& a, int in_elempack, int out_elempack)
{
ncnn::ParamDict pd;
pd.set(0, out_elempack);
std::vector<ncnn::Mat> weights(0);
ncnn::Option opt;
opt.num_threads = 1;
opt.use_vulkan_compute = false;
opt.use_int8_inference = false;
opt.use_fp16_storage = false;
opt.use_fp16_arithmetic = false;
opt.use_packing_layout = false;
ncnn::Layer* op = ncnn::create_layer_cpu("Packing");
op->load_param(pd);
ncnn::ModelBinFromMatArray mb(weights.data());
op->load_model(mb);
op->create_pipeline(opt);
ncnn::Mat ap;
ncnn::convert_packing(a, ap, in_elempack, opt);
ncnn::Mat b;
packing_cpu_naive(ap, b, out_elempack);
ncnn::Mat c;
op->forward(ap, c, opt);
op->destroy_pipeline(opt);
delete op;
if (CompareMat(b, c, 0.001) != 0)
{
fprintf(stderr, "test_packing_cpu_fp32 failed a.dims=%d a=(%d %d %d %d) in_elempack=%d out_elempack=%d\n", a.dims, a.w, a.h, a.d, a.c, in_elempack, out_elempack);
return -1;
}
return 0;
}
static int test_packing_cpu_fp16(const ncnn::Mat& a, int in_elempack, int out_elempack)
{
ncnn::ParamDict pd;
pd.set(0, out_elempack);
std::vector<ncnn::Mat> weights(0);
ncnn::Option opt;
opt.num_threads = 1;
opt.use_vulkan_compute = false;
opt.use_int8_inference = false;
opt.use_fp16_storage = true;
opt.use_fp16_arithmetic = true;
opt.use_packing_layout = false;
ncnn::Layer* op = ncnn::create_layer_cpu("Packing");
if (!op->support_fp16_storage)
{
delete op;
return 0;
}
op->load_param(pd);
ncnn::ModelBinFromMatArray mb(weights.data());
op->load_model(mb);
op->create_pipeline(opt);
ncnn::Mat a16;
ncnn::cast_float32_to_float16(a, a16, opt);
ncnn::Mat ap;
ncnn::convert_packing(a16, ap, in_elempack, opt);
ncnn::Mat b;
packing_cpu_naive(ap, b, out_elempack);
ncnn::Mat c;
op->forward(ap, c, opt);
op->destroy_pipeline(opt);
delete op;
ncnn::Mat c32;
ncnn::cast_float16_to_float32(c, c32, opt);
if (CompareMat(b, c32, 0.001) != 0)
{
fprintf(stderr, "test_packing_cpu_fp16 failed a.dims=%d a=(%d %d %d %d) in_elempack=%d out_elempack=%d\n", a.dims, a.w, a.h, a.d, a.c, in_elempack, out_elempack);
return -1;
}
return 0;
}
static int test_packing_cpu_int8(const ncnn::Mat& a, int in_elempack, int out_elempack)
{
ncnn::ParamDict pd;
pd.set(0, out_elempack);
std::vector<ncnn::Mat> weights(0);
ncnn::Option opt;
opt.num_threads = 1;
opt.use_vulkan_compute = false;
opt.use_int8_inference = false;
opt.use_fp16_storage = false;
opt.use_fp16_arithmetic = false;
opt.use_packing_layout = false;
ncnn::Layer* op = ncnn::create_layer_cpu("Packing");
op->load_param(pd);
ncnn::ModelBinFromMatArray mb(weights.data());
op->load_model(mb);
op->create_pipeline(opt);
ncnn::Mat a8;
if (a.dims == 1) a8 = RandomS8Mat(a.w);
if (a.dims == 2) a8 = RandomS8Mat(a.w, a.h);
if (a.dims == 3) a8 = RandomS8Mat(a.w, a.h, a.c);
if (a.dims == 4) a8 = RandomS8Mat(a.w, a.h, a.d, a.c);
ncnn::Mat ap;
ncnn::convert_packing(a8, ap, in_elempack, opt);
ncnn::Mat b;
packing_cpu_naive(ap, b, out_elempack);
ncnn::Mat c;
op->forward(ap, c, opt);
op->destroy_pipeline(opt);
delete op;
ncnn::Mat b32;
ncnn::cast_int8_to_float32(b, b32, opt);
ncnn::Mat c32;
ncnn::cast_int8_to_float32(c, c32, opt);
if (CompareMat(b32, c32, 0.001) != 0)
{
fprintf(stderr, "test_packing_cpu_int8 failed a.dims=%d a=(%d %d %d %d) in_elempack=%d out_elempack=%d\n", a.dims, a.w, a.h, a.d, a.c, in_elempack, out_elempack);
return -1;
}
return 0;
}
static int test_packing_cpu(const ncnn::Mat& a, int in_elempack, int out_elempack)
{
return 0
|| test_packing_cpu_fp32(a, in_elempack, out_elempack)
|| test_packing_cpu_fp16(a, in_elempack, out_elempack)
|| test_packing_cpu_int8(a, in_elempack, out_elempack);
}
#if NCNN_VULKAN
static int test_packing_gpu_fp32(const ncnn::Mat& a, int in_elempack, int out_elempack)
{
ncnn::ParamDict pd;
pd.set(0, out_elempack);
pd.set(2, 1); // cast_type_from
pd.set(3, 1); // cast_type_to
std::vector<ncnn::Mat> weights(0);
ncnn::Option opt;
opt.num_threads = 1;
opt.use_vulkan_compute = true;
opt.use_int8_inference = false;
opt.use_fp16_packed = false;
opt.use_fp16_storage = false;
opt.use_fp16_arithmetic = false;
opt.use_int8_storage = false;
opt.use_int8_arithmetic = false;
opt.use_packing_layout = true;
opt.use_shader_pack8 = true;
ncnn::VulkanDevice* vkdev = ncnn::get_gpu_device();
ncnn::VkAllocator* blob_vkallocator = vkdev->acquire_blob_allocator();
ncnn::VkAllocator* staging_vkallocator = vkdev->acquire_staging_allocator();
opt.blob_vkallocator = blob_vkallocator;
opt.workspace_vkallocator = blob_vkallocator;
opt.staging_vkallocator = staging_vkallocator;
if (!vkdev->info.support_fp16_packed()) opt.use_fp16_packed = false;
if (!vkdev->info.support_fp16_storage()) opt.use_fp16_storage = false;
ncnn::Layer* op = ncnn::create_layer_vulkan("Packing");
op->vkdev = vkdev;
op->load_param(pd);
ncnn::ModelBinFromMatArray mb(weights.data());
op->load_model(mb);
op->create_pipeline(opt);
ncnn::Mat ap;
ncnn::convert_packing(a, ap, in_elempack, opt);
ncnn::Mat b;
packing_cpu_naive(ap, b, out_elempack);
ncnn::Mat d;
// forward
ncnn::VkCompute cmd(vkdev);
// upload
ncnn::VkMat a_gpu;
cmd.record_clone(ap, a_gpu, opt);
ncnn::VkMat d_gpu;
op->forward(a_gpu, d_gpu, cmd, opt);
// download
cmd.record_clone(d_gpu, d, opt);
cmd.submit_and_wait();
op->destroy_pipeline(opt);
delete op;
vkdev->reclaim_blob_allocator(blob_vkallocator);
vkdev->reclaim_staging_allocator(staging_vkallocator);
if (CompareMat(b, d, 0.001) != 0)
{
fprintf(stderr, "test_packing_gpu failed a.dims=%d a=(%d %d %d %d) in_elempack=%d out_elempack=%d\n", a.dims, a.w, a.h, a.d, a.c, in_elempack, out_elempack);
return -1;
}
return 0;
}
static int test_packing_gpu_int8(const ncnn::Mat& a, int in_elempack, int out_elempack)
{
ncnn::ParamDict pd;
pd.set(0, out_elempack);
pd.set(2, 4); // cast_type_from
pd.set(3, 4); // cast_type_to
std::vector<ncnn::Mat> weights(0);
ncnn::Option opt;
opt.num_threads = 1;
opt.use_vulkan_compute = true;
opt.use_int8_inference = false;
opt.use_fp16_packed = false;
opt.use_fp16_storage = false;
opt.use_fp16_arithmetic = false;
opt.use_int8_storage = false;
opt.use_int8_arithmetic = false;
opt.use_packing_layout = true;
opt.use_shader_pack8 = true;
ncnn::VulkanDevice* vkdev = ncnn::get_gpu_device();
ncnn::VkAllocator* blob_vkallocator = vkdev->acquire_blob_allocator();
ncnn::VkAllocator* staging_vkallocator = vkdev->acquire_staging_allocator();
opt.blob_vkallocator = blob_vkallocator;
opt.workspace_vkallocator = blob_vkallocator;
opt.staging_vkallocator = staging_vkallocator;
if (!vkdev->info.support_int8_packed()) opt.use_int8_packed = false;
if (!vkdev->info.support_int8_storage()) opt.use_int8_storage = false;
ncnn::Layer* op = ncnn::create_layer_vulkan("Packing");
op->vkdev = vkdev;
op->load_param(pd);
ncnn::ModelBinFromMatArray mb(weights.data());
op->load_model(mb);
op->create_pipeline(opt);
ncnn::Mat a8;
if (a.dims == 1) a8 = RandomS8Mat(a.w);
if (a.dims == 2) a8 = RandomS8Mat(a.w, a.h);
if (a.dims == 3) a8 = RandomS8Mat(a.w, a.h, a.c);
if (a.dims == 4) a8 = RandomS8Mat(a.w, a.h, a.d, a.c);
ncnn::Mat ap;
ncnn::convert_packing(a8, ap, in_elempack, opt);
ncnn::Mat b;
packing_cpu_naive(ap, b, out_elempack);
ncnn::Mat c;
// forward
ncnn::VkCompute cmd(vkdev);
// upload
ncnn::VkMat a_gpu;
cmd.record_clone(ap, a_gpu, opt);
ncnn::VkMat c_gpu;
op->forward(a_gpu, c_gpu, cmd, opt);
// download
cmd.record_clone(c_gpu, c, opt);
cmd.submit_and_wait();
op->destroy_pipeline(opt);
delete op;
ncnn::Mat b32;
ncnn::cast_int8_to_float32(b, b32, opt);
ncnn::Mat c32;
ncnn::cast_int8_to_float32(c, c32, opt);
if (CompareMat(b32, c32, 0.001) != 0)
{
fprintf(stderr, "test_packing_gpu_int8 failed a.dims=%d a=(%d %d %d %d) in_elempack=%d out_elempack=%d\n", a.dims, a.w, a.h, a.d, a.c, in_elempack, out_elempack);
return -1;
}
return 0;
}
static int test_packing_gpu(const ncnn::Mat& a, int in_elempack, int out_elempack)
{
return 0
|| test_packing_gpu_fp32(a, in_elempack, out_elempack)
|| test_packing_gpu_int8(a, in_elempack, out_elempack);
}
#endif
static int test_packing_cpu(const ncnn::Mat& a)
{
return 0
|| test_packing_cpu(a, 1, 1)
|| test_packing_cpu(a, 4, 4)
|| test_packing_cpu(a, 4, 8)
|| test_packing_cpu(a, 1, 4)
|| test_packing_cpu(a, 4, 1)
|| test_packing_cpu(a, 1, 8)
|| test_packing_cpu(a, 8, 1)
|| test_packing_cpu(a, 4, 8)
|| test_packing_cpu(a, 8, 4)
|| test_packing_cpu(a, 1, 16)
|| test_packing_cpu(a, 16, 1)
|| test_packing_cpu(a, 4, 16)
|| test_packing_cpu(a, 16, 4)
|| test_packing_cpu(a, 8, 16)
|| test_packing_cpu(a, 16, 8);
}
#if NCNN_VULKAN
static int test_packing_gpu(const ncnn::Mat& a)
{
return 0
|| test_packing_gpu(a, 1, 1)
|| test_packing_gpu(a, 4, 4)
|| test_packing_gpu(a, 8, 8)
|| test_packing_gpu(a, 1, 4)
|| test_packing_gpu(a, 4, 1)
|| test_packing_gpu(a, 1, 8)
|| test_packing_gpu(a, 8, 1)
|| test_packing_gpu(a, 4, 8)
|| test_packing_gpu(a, 8, 4);
}
#endif // NCNN_VULKAN
static int test_packing_0()
{
ncnn::Mat a = RandomMat(9, 7, 10, 16);
ncnn::Mat b = RandomMat(9, 7, 10, 3);
return 0
|| test_packing_cpu(a)
|| test_packing_cpu(b)
#if NCNN_VULKAN
|| test_packing_gpu(a)
#endif
;
}
static int test_packing_1()
{
ncnn::Mat a = RandomMat(9, 10, 16);
ncnn::Mat b = RandomMat(9, 10, 3);
return 0
|| test_packing_cpu(a)
|| test_packing_cpu(b)
#if NCNN_VULKAN
|| test_packing_gpu(a)
#endif
;
}
static int test_packing_2()
{
ncnn::Mat a = RandomMat(19, 16);
return 0
|| test_packing_cpu(a)
#if NCNN_VULKAN
|| test_packing_gpu(a)
#endif
;
}
static int test_packing_3()
{
ncnn::Mat a = RandomMat(80);
return 0
|| test_packing_cpu(a)
#if NCNN_VULKAN
|| test_packing_gpu(a)
#endif
;
}
int main()
{
SRAND(7767517);
return 0
|| test_packing_0()
|| test_packing_1()
|| test_packing_2()
|| test_packing_3();
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
C/C++
1
https://gitee.com/Tencent/ncnn.git
git@gitee.com:Tencent/ncnn.git
Tencent
ncnn
ncnn
master

搜索帮助