58 Star 280 Fork 3

腾讯开源/ncnn

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
test_reduction.cpp 6.84 KB
一键复制 编辑 原始数据 按行查看 历史
nihui 提交于 6个月前 . slim reduction (#5866)
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "testutil.h"
#define OP_TYPE_MAX 11
static int op_type = 0;
static std::vector<int> IntArray(int a0)
{
std::vector<int> m(1);
m[0] = a0;
return m;
}
static std::vector<int> IntArray(int a0, int a1)
{
std::vector<int> m(2);
m[0] = a0;
m[1] = a1;
return m;
}
static std::vector<int> IntArray(int a0, int a1, int a2)
{
std::vector<int> m(3);
m[0] = a0;
m[1] = a1;
m[2] = a2;
return m;
}
static std::vector<int> IntArray(int a0, int a1, int a2, int a3)
{
std::vector<int> m(4);
m[0] = a0;
m[1] = a1;
m[2] = a2;
m[3] = a3;
return m;
}
static void print_int_array(const std::vector<int>& a)
{
fprintf(stderr, "[");
for (size_t i = 0; i < a.size(); i++)
{
fprintf(stderr, " %d", a[i]);
}
fprintf(stderr, " ]");
}
static int test_reduction(const ncnn::Mat& _a, float coeff, int keepdims)
{
ncnn::Mat a = _a;
if (op_type == 9 || op_type == 10)
{
// value must be positive for logsum and logsumexp
Randomize(a, 0.001f, 2.f);
}
ncnn::ParamDict pd;
pd.set(0, op_type);
pd.set(1, 1); // reduce_all
pd.set(2, coeff);
pd.set(4, keepdims);
std::vector<ncnn::Mat> weights(0);
int ret = test_layer("Reduction", pd, weights, a);
if (ret != 0)
{
fprintf(stderr, "test_reduction failed a.dims=%d a=(%d %d %d %d) op_type=%d coeff=%f keepdims=%d reduce_all=1\n", a.dims, a.w, a.h, a.d, a.c, op_type, coeff, keepdims);
}
return ret;
}
static int test_reduction(const ncnn::Mat& _a, float coeff, int keepdims, const std::vector<int>& axes_array)
{
ncnn::Mat a = _a;
if (op_type == 9 || op_type == 10)
{
// value must be positive for logsum and logsumexp
Randomize(a, 0.001f, 2.f);
}
ncnn::Mat axes(axes_array.size());
{
int* p = axes;
for (size_t i = 0; i < axes_array.size(); i++)
{
p[i] = axes_array[i];
}
}
ncnn::ParamDict pd;
pd.set(0, op_type);
pd.set(1, 0); // reduce_all
pd.set(2, coeff);
pd.set(3, axes);
pd.set(4, keepdims);
pd.set(5, 1); // fixbug0
std::vector<ncnn::Mat> weights(0);
int ret = test_layer("Reduction", pd, weights, a);
if (ret != 0)
{
fprintf(stderr, "test_reduction failed a.dims=%d a=(%d %d %d %d) op_type=%d coeff=%f keepdims=%d", a.dims, a.w, a.h, a.d, a.c, op_type, coeff, keepdims);
fprintf(stderr, " axes=");
print_int_array(axes_array);
fprintf(stderr, "\n");
}
return ret;
}
static int test_reduction_nd(const ncnn::Mat& a)
{
int ret1 = 0
|| test_reduction(a, 1.f, 0)
|| test_reduction(a, 2.f, 0)
|| test_reduction(a, 1.f, 1)
|| test_reduction(a, 2.f, 1)
|| test_reduction(a, 1.f, 0, IntArray(0))
|| test_reduction(a, 1.f, 1, IntArray(0));
if (a.dims == 1 || ret1 != 0)
return ret1;
int ret2 = 0
|| test_reduction(a, 2.f, 0, IntArray(1))
|| test_reduction(a, 2.f, 1, IntArray(1))
|| test_reduction(a, 1.f, 0, IntArray(0, 1))
|| test_reduction(a, 1.f, 1, IntArray(0, 1));
if (a.dims == 2 || ret2 != 0)
return ret2;
int ret3 = 0
|| test_reduction(a, 1.f, 0, IntArray(2))
|| test_reduction(a, 1.f, 1, IntArray(2))
|| test_reduction(a, 2.f, 0, IntArray(0, 2))
|| test_reduction(a, 2.f, 0, IntArray(1, 2))
|| test_reduction(a, 2.f, 1, IntArray(0, 2))
|| test_reduction(a, 2.f, 1, IntArray(1, 2))
|| test_reduction(a, 1.f, 0, IntArray(0, 1, 2))
|| test_reduction(a, 1.f, 1, IntArray(0, 1, 2));
if (a.dims == 3 || ret3 != 0)
return ret3;
int ret4 = 0
|| test_reduction(a, 2.f, 0, IntArray(3))
|| test_reduction(a, 2.f, 1, IntArray(3))
|| test_reduction(a, 1.f, 0, IntArray(0, 3))
|| test_reduction(a, 1.f, 0, IntArray(1, 3))
|| test_reduction(a, 2.f, 0, IntArray(2, 3))
|| test_reduction(a, 1.f, 1, IntArray(0, 3))
|| test_reduction(a, 1.f, 1, IntArray(1, 3))
|| test_reduction(a, 2.f, 1, IntArray(2, 3))
|| test_reduction(a, 2.f, 0, IntArray(0, 1, 3))
|| test_reduction(a, 1.f, 0, IntArray(0, 2, 3))
|| test_reduction(a, 2.f, 0, IntArray(1, 2, 3))
|| test_reduction(a, 2.f, 1, IntArray(0, 1, 3))
|| test_reduction(a, 1.f, 1, IntArray(0, 2, 3))
|| test_reduction(a, 2.f, 1, IntArray(1, 2, 3))
|| test_reduction(a, 1.f, 0, IntArray(0, 1, 2, 3))
|| test_reduction(a, 1.f, 1, IntArray(0, 1, 2, 3));
return ret4;
}
static int test_reduction_0()
{
ncnn::Mat a = RandomMat(5, 6, 7, 24);
ncnn::Mat b = RandomMat(7, 8, 9, 12);
ncnn::Mat c = RandomMat(3, 4, 5, 13);
return 0
|| test_reduction_nd(a)
|| test_reduction_nd(b)
|| test_reduction_nd(c);
}
static int test_reduction_1()
{
ncnn::Mat a = RandomMat(5, 7, 24);
ncnn::Mat b = RandomMat(7, 9, 12);
ncnn::Mat c = RandomMat(3, 5, 13);
return 0
|| test_reduction_nd(a)
|| test_reduction_nd(b)
|| test_reduction_nd(c);
}
static int test_reduction_2()
{
ncnn::Mat a = RandomMat(15, 24);
ncnn::Mat b = RandomMat(17, 12);
ncnn::Mat c = RandomMat(19, 15);
return 0
|| test_reduction_nd(a)
|| test_reduction_nd(b)
|| test_reduction_nd(c);
}
static int test_reduction_3()
{
ncnn::Mat a = RandomMat(128);
ncnn::Mat b = RandomMat(124);
ncnn::Mat c = RandomMat(127);
return 0
|| test_reduction_nd(a)
|| test_reduction_nd(b)
|| test_reduction_nd(c);
}
int main()
{
SRAND(7767517);
for (op_type = 0; op_type < OP_TYPE_MAX; op_type++)
{
int ret = 0
|| test_reduction_0()
|| test_reduction_1()
|| test_reduction_2()
|| test_reduction_3();
if (ret != 0)
return ret;
}
return 0;
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
C/C++
1
https://gitee.com/Tencent/ncnn.git
git@gitee.com:Tencent/ncnn.git
Tencent
ncnn
ncnn
master

搜索帮助