13 Star 61 Fork 279

Ascend/ModelZoo-TensorFlow

Create your Gitee Account
Explore and code with more than 13.5 million developers,Free private repositories !:)
Sign up
文件
Clone or Download
contribute
Sync branch
Cancel
Notice: Creating folder will generate an empty file .keep, because not support in Git
Loading...
README

English|中文

Resnet50v1.5 Inference for Tensorflow

This repository provides a script and recipe to Inference of the Resnet50v1.5 model.

Notice

This sample only provides reference for you to learn the Ascend software stack and is not for commercial purposes.

Before starting, please pay attention to the following adaptation conditions. If they do not match, may leading in failure.

Conditions Need
CANN Version >=5.0.3
Chip Platform Ascend310/Ascend310P3
3rd Party Requirements Please follow the 'requirements.txt'

Quick Start Guide

1. Clone the respository

git clone https://gitee.com/ascend/ModelZoo-TensorFlow.git
cd Modelzoo-TensorFlow/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL

2. Download and preprocess the dataset

  1. Download the ImageNet2012 Validation dataset by yourself. You can get the validation pictures(50000 JPEGS and a ILSVRC2012val-label-index.txt)

  2. Put JPEGS to 'scripts/ILSVRC2012val' and label text to 'scripts/'

  3. Images Preprocess:

cd scripts
mkdir input_bins
python3 resnet50v15_preprocessing.py ./ILSVRC2012val/ ./input_bins/

The jpegs pictures will be preprocessed to bin fils.

3. Offline Inference

Convert pb to om.

  • configure the env

    Please follow the guide to set the envs

  • convert pb to om

    pb download link

    atc --model=resnet50v15_tf.pb --framework=3 --output=resnet50v15_tf_1batch --output_type=FP32 --soc_version=Ascend310 --input_shape="input_tensor:1,224,224,3" --insert_op_conf=resnet50v15_aipp.cfg --enable_small_channel=1 --log=info
    
  • Build the program

    bash build.sh
    
  • Run the program:

    cd scripts
    bash benchmark_tf.sh
    

Performance

Result

Our result was obtained by running the applicable inference script. To achieve the same results, follow the steps in the Quick Start Guide.

Inference accuracy results

model data Top1/Top5
offline Inference 50000 images 76.5 %/ 93.1%

Reference

[1] https://github.com/IntelAI/models

马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/ascend/ModelZoo-TensorFlow.git
git@gitee.com:ascend/ModelZoo-TensorFlow.git
ascend
ModelZoo-TensorFlow
ModelZoo-TensorFlow
master

Search