1 Star 5 Fork 0

hui_lee/patchcore

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
Apache-2.0

Towards Total Recall in Industrial Anomaly Detection

This repository contains the implementation for PatchCore as proposed in Roth et al. (2021), https://arxiv.org/abs/2106.08265.

It also provides various pretrained models that can achieve up to 99.6% image-level anomaly detection AUROC, 98.4% pixel-level anomaly localization AUROC and >95% PRO score (although the later metric is not included for license reasons).

defect_segmentation

For questions & feedback, please reach out to karsten.rh1@gmail.com


Quick Guide

First, clone this repository and set the PYTHONPATH environment variable with env PYTHONPATH=src python bin/run_patchcore.py. To train PatchCore on MVTec AD (as described below), run

datapath=/path_to_mvtec_folder/mvtec datasets=('bottle' 'cable' 'capsule' 'carpet' 'grid' 'hazelnut'
'leather' 'metal_nut' 'pill' 'screw' 'tile' 'toothbrush' 'transistor' 'wood' 'zipper')
dataset_flags=($(for dataset in "${datasets[@]}"; do echo '-d '$dataset; done))


python bin/run_patchcore.py --gpu 0 --seed 0 --save_patchcore_model \
--log_group IM224_WR50_L2-3_P01_D1024-1024_PS-3_AN-1_S0 --log_online --log_project MVTecAD_Results results \
patch_core -b wideresnet50 -le layer2 -le layer3 --faiss_on_gpu \
--pretrain_embed_dimension 1024  --target_embed_dimension 1024 --anomaly_scorer_num_nn 1 --patchsize 3 \
sampler -p 0.1 approx_greedy_coreset dataset --resize 256 --imagesize 224 "${dataset_flags[@]}" mvtec $datapath

which runs PatchCore on MVTec images of sizes 224x224 using a WideResNet50-backbone pretrained on ImageNet. For other sample runs with different backbones, larger images or ensembles, see sample_training.sh.

Given a pretrained PatchCore model (or models for all MVTec AD subdatasets), these can be evaluated using

datapath=/path_to_mvtec_folder/mvtec
loadpath=/path_to_pretrained_patchcores_models
modelfolder=IM224_WR50_L2-3_P001_D1024-1024_PS-3_AN-1_S0
savefolder=evaluated_results'/'$modelfolder

datasets=('bottle'  'cable'  'capsule'  'carpet'  'grid'  'hazelnut' 'leather'  'metal_nut'  'pill' 'screw' 'tile' 'toothbrush' 'transistor' 'wood' 'zipper')
dataset_flags=($(for dataset in "${datasets[@]}"; do echo '-d '$dataset; done))
model_flags=($(for dataset in "${datasets[@]}"; do echo '-p '$loadpath'/'$modelfolder'/models/mvtec_'$dataset; done))

python bin/load_and_evaluate_patchcore.py --gpu 0 --seed 0 $savefolder \
patch_core_loader "${model_flags[@]}" --faiss_on_gpu \
dataset --resize 366 --imagesize 320 "${dataset_flags[@]}" mvtec $datapath

A set of pretrained PatchCores are hosted here: add link. To use them (and replicate training), check out sample_evaluation.sh and sample_training.sh.


In-Depth Description

Requirements

Our results were computed using Python 3.8, with packages and respective version noted in requirements.txt. In general, the majority of experiments should not exceed 11GB of GPU memory; however using significantly large input images will incur higher memory cost.

Setting up MVTec AD

To set up the main MVTec AD benchmark, download it from here: https://www.mvtec.com/company/research/datasets/mvtec-ad. Place it in some location datapath. Make sure that it follows the following data tree:

mvtec
|-- bottle
|-----|----- ground_truth
|-----|----- test
|-----|--------|------ good
|-----|--------|------ broken_large
|-----|--------|------ ...
|-----|----- train
|-----|--------|------ good
|-- cable
|-- ...

containing in total 15 subdatasets: bottle, cable, capsule, carpet, grid, hazelnut, leather, metal_nut, pill, screw, tile, toothbrush, transistor, wood, zipper.

"Training" PatchCore

PatchCore extracts a (coreset-subsampled) memory of pretrained, locally aggregated training patch features:

patchcore_architecture

To do so, we have provided bin/run_patchcore.py, which uses click to manage and aggregate input arguments. This looks something like

python bin/run_patchcore.py \
--gpu <gpu_id> --seed <seed> # Set GPU-id & reproducibility seed.
--save_patchcore_model # If set, saves the patchcore model(s).
--log_online # If set, logs results to a Weights & Biases account.
--log_group IM224_WR50_L2-3_P01_D1024-1024_PS-3_AN-1_S0 --log_project MVTecAD_Results results # Logging details: Name of the run & Name of the overall project folder.

patch_core  # We now pass all PatchCore-related parameters.
-b wideresnet50  # Which backbone to use.
-le layer2 -le layer3 # Which layers to extract features from.
--faiss_on_gpu # If similarity-searches should be performed on GPU.
--pretrain_embed_dimension 1024  --target_embed_dimension 1024 # Dimensionality of features extracted from backbone layer(s) and final aggregated PatchCore Dimensionality
--anomaly_scorer_num_nn 1 --patchsize 3 # Num. nearest neighbours to use for anomaly detection & neighbourhoodsize for local aggregation.

sampler # We now pass all the (Coreset-)subsampling parameters.
-p 0.1 approx_greedy_coreset # Subsampling percentage & exact subsampling method.

dataset # We now pass all the Dataset-relevant parameters.
--resize 256 --imagesize 224 "${dataset_flags[@]}" mvtec $datapath # Initial resizing shape and final imagesize (centercropped) as well as the MVTec subdatasets to use.

Note that sample_runs.sh contains exemplary training runs to achieve strong AD performance. Due to repository changes (& hardware differences), results may deviate slightly from those reported in the paper, but should generally be very close or even better. As mentioned previously, for re-use and replicability we have also provided several pretrained PatchCore models hosted at add link - download the folder, extract, and pass the model of your choice to bin/load_and_evaluate_patchcore.py which showcases an exemplary evaluation process.

During (after) training, the following information will be stored:

|PatchCore model (if --save_patchcore_model is set)
|-- models
|-----|----- mvtec_bottle
|-----|-----------|------- nnscorer_search_index.faiss
|-----|-----------|------- patchcore_params.pkl
|-----|----- mvtec_cable
|-----|----- ...
|-- results.csv # Contains performance for each subdataset.

|Sample_segmentations (if --save_segmentation_images is set)

In addition to the main training process, we have also included Weights-&-Biases logging, which allows you to log all training & test performances online to Weights-and-Biases servers (https://wandb.ai). To use that, include the --log_online flag and provide your W&B key in run_patchcore.py > --log_wandb_key.

Finally, due to the effectiveness and efficiency of PatchCore, we also incorporate the option to use an ensemble of backbone networks and network featuremaps. For this, provide the list of backbones to use (as listed in /src/anomaly_detection/backbones.py) with -b <backbone and, given their ordering, denote the layers to extract with -le idx.<layer_name>. An example with three different backbones would look something like

python bin/run_patchcore.py --gpu <gpu_id> --seed <seed> --save_patchcore_model --log_group <log_name> --log_online --log_project <log_project> results \

patch_core -b wideresnet101 -b resnext101 -b densenet201 -le 0.layer2 -le 0.layer3 -le 1.layer2 -le 1.layer3 -le 2.features.denseblock2 -le 2.features.denseblock3 --faiss_on_gpu \

--pretrain_embed_dimension 1024  --target_embed_dimension 384 --anomaly_scorer_num_nn 1 --patchsize 3 sampler -p 0.01 approx_greedy_coreset dataset --resize 256 --imagesize 224 "${dataset_flags[@]}" mvtec $datapath

When using --save_patchcore_model, in the case of ensembles, a respective ensemble of PatchCore parameters is stored.

Evaluating a pretrained PatchCore model

To evaluate a/our pretrained PatchCore model(s), run

python bin/load_and_evaluate_patchcore.py --gpu <gpu_id> --seed <seed> $savefolder \
patch_core_loader "${model_flags[@]}" --faiss_on_gpu \
dataset --resize 366 --imagesize 320 "${dataset_flags[@]}" mvtec $datapath

assuming your pretrained model locations to be contained in model_flags; one for each subdataset in dataset_flags. Results will then be stored in savefolder. Example model & dataset flags:

model_flags=('-p', 'path_to_mvtec_bottle_patchcore_model', '-p', 'path_to_mvtec_cable_patchcore_model', ...)
dataset_flags=('-d', 'bottle', '-d', 'cable', ...)

Expected performance of pretrained models

While there may be minor changes in performance due to software & hardware differences, the provided pretrained models should achieve the performances provided in their respective results.csv-files. The mean performance (particularly for the baseline WR50 as well as the larger Ensemble model) should look something like:

Model Mean AUROC Mean Seg. AUROC Mean PRO
WR50-baseline 99.2% 98.1% 94.4%
Ensemble 99.6% 98.2% 94.9%

Citing

If you use the code in this repository, please cite

@misc{roth2021total,
      title={Towards Total Recall in Industrial Anomaly Detection},
      author={Karsten Roth and Latha Pemula and Joaquin Zepeda and Bernhard Schölkopf and Thomas Brox and Peter Gehler},
      year={2021},
      eprint={2106.08265},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.

简介

缺陷检测代码改进 展开 收起
README
Apache-2.0
取消

发行版

暂无发行版

贡献者

全部

近期动态

不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/coderlihui/patchcore.git
git@gitee.com:coderlihui/patchcore.git
coderlihui
patchcore
patchcore
master

搜索帮助