1 Star 0 Fork 0

何岸康/lightllm

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
Apache-2.0
LightLLM

docs Docker stars Discord Banner license

LightLLM is a Python-based LLM (Large Language Model) inference and serving framework, notable for its lightweight design, easy scalability, and high-speed performance. LightLLM harnesses the strengths of numerous well-regarded open-source implementations, including but not limited to FasterTransformer, TGI, vLLM, and FlashAttention.

Features

  • Tri-process asynchronous collaboration: tokenization, model inference, and detokenization are performed asynchronously, leading to a considerable improvement in GPU utilization.
  • Nopad (Unpad): offers support for nopad attention operations across multiple models to efficiently handle requests with large length disparities.
  • Dynamic Batch: enables dynamic batch scheduling of requests
  • FlashAttention: incorporates FlashAttention to improve speed and reduce GPU memory footprint during inference.
  • Tensor Parallelism: utilizes tensor parallelism over multiple GPUs for faster inference.
  • Token Attention: implements token-wise's KV cache memory management mechanism, allowing for zero memory waste during inference.
  • High-performance Router: collaborates with Token Attention to meticulously manage the GPU memory of each token, thereby optimizing system throughput.
  • Int8KV Cache: This feature will increase the capacity of tokens to almost twice as much. only llama support.

Supported Model List

When you start Qwen-7b, you need to set the parameter '--eos_id 151643 --trust_remote_code'.

ChatGLM2 needs to set the parameter '--trust_remote_code'.

Baichuan and Baichuan2 needs to set the parameter '--trust_remote_code'.

InternLM needs to set the parameter '--trust_remote_code'.

Get started

Requirements

The code has been tested with Pytorch>=1.3, CUDA 11.8, and Python 3.9. To install the necessary dependencies, please refer to the provided requirements.txt and follow the instructions as

pip install -r requirements.txt

Container

You can use the official Docker container to run the model more easily. To do this, follow these steps:

  • Pull the container from the GitHub Container Registry:

    docker pull ghcr.io/modeltc/lightllm:main
    
  • Run the container with GPU support and port mapping:

    docker run -it --gpus all -p 8080:8080                  \
            --shm-size 1g -v your_local_path:/data/         \
            ghcr.io/modeltc/lightllm:main /bin/bash
    
  • Alternatively, you can build the container yourself:

    docker build -t <image_name> .
    docker run -it --gpus all -p 8080:8080                  \
            --shm-size 1g -v your_local_path:/data/         \
            <image_name> /bin/bash
    
  • You can also use a helper script to launch both the container and the server:

    python tools/quick_launch_docker.py --help
    
  • Note: If you use multiple GPUs, you may need to increase the shared memory size by adding --shm-size to the docker run command.

Installation

  • Install from the source code by
python setup.py install

The code has been tested on a range of GPUs including A100, A800, 4090, and H800. If you are running the code on A100, A800, etc., we recommend using triton==2.1.0 or triton==2.0.0.dev20221202. If you are running the code on H800, etc., it is necessary to compile and install the source code of triton==2.1.0 from the GitHub repository. If the code doesn't work on other GPUs, try modifying the triton kernel used in model inference.

  • Install Triton Package

use triton==2.1.0 (Better performance, but the code is under continuous development and may be unstable.)

pip install -U --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/Triton-Nightly/pypi/simple/ triton-nightly

use triton==2.0.0.dev20221202 (This version has a memory leak bug. Refer to the issue #209 for the fix method. )

pip install triton==2.0.0.dev20221202

RUN LLaMA

With efficient Routers and TokenAttention, LightLLM can be deployed as a service and achieve the state-of-the-art throughput performance.

Launch the server:

python -m lightllm.server.api_server --model_dir /path/llama-7B     \
                                     --host 0.0.0.0                 \
                                     --port 8080                    \
                                     --tp 1                         \
                                     --max_total_token_num 120000

The parameter max_total_token_num is influenced by the GPU memory of the deployment environment. A larger value for this parameter allows for the processing of more concurrent requests, thereby increasing system concurrency. For more startup parameters, please refer to api_server.py or ApiServerArgs.md.

To initiate a query in the shell:

curl http://127.0.0.1:8080/generate     \
    -X POST                             \
    -d '{"inputs":"What is AI?","parameters":{"max_new_tokens":17, "frequency_penalty":1}}' \
    -H 'Content-Type: application/json'

To query from Python:

import time
import requests
import json

url = 'http://localhost:8080/generate'
headers = {'Content-Type': 'application/json'}
data = {
    'inputs': 'What is AI?',
    "parameters": {
        'do_sample': False,
        'ignore_eos': False,
        'max_new_tokens': 1024,
    }
}
response = requests.post(url, headers=headers, data=json.dumps(data))
if response.status_code == 200:
    print(response.json())
else:
    print('Error:', response.status_code, response.text)

Performance

Service Performance

We compared the service performance of LightLLM and vLLM==0.1.2 on LLaMA-7B using an A800 with 80G GPU memory.

To begin, prepare the data as follows:

wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json

Launch the service:

python -m lightllm.server.api_server --model_dir /path/llama-7b --tp 1 --max_total_token_num 121060 --tokenizer_mode auto

Evaluation:

cd test
python benchmark_serving.py --tokenizer /path/llama-7b --dataset /path/ShareGPT_V3_unfiltered_cleaned_split.json --num-prompts 2000 --request-rate 200

The performance comparison results are presented below:

vLLM LightLLM
Total time: 361.79 s
Throughput: 5.53 requests/s
Total time: 188.85 s
Throughput: 10.59 requests/s

Static inference performance

For debugging, we offer static performance testing scripts for various models. For instance, you can evaluate the inference performance of the LLaMA model by

cd test/model
python test_llama.py

FAQ

  • The LLaMA tokenizer fails to load.
    • consider resolving this by running the command pip install protobuf==3.20.0.
  • error : PTX .version 7.4 does not support .target sm_89
    • launch with bash tools/resolve_ptx_version python -m lightllm.server.api_server ...

Community

For further information and discussion, join our discord server.

License

This repository is released under the Apache-2.0 license.

Acknowledgement

We learned a lot from the following projects when developing LightLLM.

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

简介

暂无描述 展开 收起
Python 等 3 种语言
Apache-2.0
取消

发行版

暂无发行版

近期动态

1年多前创建了仓库
不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/corey123/lightllm.git
git@gitee.com:corey123/lightllm.git
corey123
lightllm
lightllm
main

搜索帮助