MRBIGR is a multifunctional toolkit for pre-GWAS, GWAS and post-GWAS of both traditional and multi-omics data. MRBIGR provides all the components needed to build a complete GWAS pipeline, and integrates with rich post-GWAS analysis tools such as significantly associated locus (SAL) annotation and haplotype analysis. In particular, Mendelian randomization (MR) analysis, MR-based network construction, module identification and gene ontology analysis are proposed for further genetic regulation studies. Additionally, it also produces rich plots for visualization of the analysis results and other formatted data.
git clone https://gitee.com/crazyhsu/MRBIGR.git
cd MRBIGR
docker build -t mrbigr_image .
curr_dir=$(pwd)
docker run -dit --name mrbigr_env -p 3838:3838 \
-v $curr_dir/MRBIGR_data:/root/MRBIGR/MRBIGR_data \
-v $curr_dir/MRBIGR_output:/root/MRBIGR/MRBIGR_output \
-v $curr_dir/MRBIGR_log:/root/MRBIGR/MRBIGR_log \
-e SHINY_INPUT_PATH=/root/MRBIGR/MRBIGR_data \
-e SHINY_OUTPUT_PATH=/root/MRBIGR/MRBIGR_output \
-e SHINY_LOG_PATH=/root/MRBIGR/MRBIGR_log \
-e SHINY_ROOT_PATH=/root/MRBIGR \
mrbigr_image:latest
If no exception is thrown out, please enter the http://localhost:3838
in the browser and then you will see the following interface:
Note: If you encounter the issue like
#0 building with "default" instance using docker driver
#1 [internal] load build definition from Dockerfile
#1 transferring dockerfile: 1.10kB done
#1 DONE 0.2s
#2 [internal] load metadata for docker.io/crazyhsu/mrbigr_env:v1.2
#2 ERROR: failed to authorize: failed to fetch anonymous token: Get "https://auth.docker.io/token?scope=repository%3Acrazyhsu%2Fmrbigr_env%3Apull&service=registry.docker.io": dial tcp [2a03:2880:f130:83:face:b00c:0:25de]:443: connectex: A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond.
------
> [internal] load metadata for docker.io/crazyhsu/mrbigr_env:v1.2:
------
Dockerfile:1
--------------------
1 | >>> FROM crazyhsu/mrbigr_env:v1.2
2 |
3 | ENV CONDA_DEFAULT_ENV=mrbigr
--------------------
ERROR: failed to solve: crazyhsu/mrbigr_env:v1.2: failed to authorize: failed to fetch anonymous token: Get "https://auth.docker.io/token?scope=repository%3Acrazyhsu%2Fmrbigr_env%3Apull&service=registry.docker.io": dial tcp [2a03:2880:f130:83:face:b00c:0:25de]:443: connectex: A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond.
Please try the following code:
git clone https://gitee.com/crazyhsu/MRBIGR.git
cd MRBIGR
docker pull crazyhsu/mrbigr_env:v1.2 # direct pull the images without authorize
docker build -t mrbigr_image .
# or
wget https://zenodo.org/records/13955396/files/mrbigr_env_v1.2.tar
docker load -i mrbigr_env_v1.2.tar
docker build -t mrbigr_image .
Then run the docker container:
curr_dir=$(pwd)
docker run -dit --name mrbigr_env -p 3838:3838 \
-v $curr_dir/MRBIGR_data:/root/MRBIGR/MRBIGR_data \
-v $curr_dir/MRBIGR_output/demo:/root/MRBIGR/MRBIGR_output/demo \
-v $curr_dir/MRBIGR_log:/root/MRBIGR/MRBIGR_log \
-e SHINY_INPUT_PATH=/root/MRBIGR/MRBIGR_data \
-e SHINY_OUTPUT_PATH=/root/MRBIGR/MRBIGR_output/demo \
-e SHINY_LOG_PATH=/root/MRBIGR/MRBIGR_log \
-e SHINY_ROOT_PATH=/root/MRBIGR \
mrbigr_image:latest
git clone https://gitee.com/crazyhsu/MRBIGR.git
cd MRBIGR
conda create -n mrbigr python=3.7 -y
conda activate mrbigr
python setup.py build
python setup.py install
pip install pyranges
conda install -y -c conda-forge r-rcppeigen r-xml r-rsqlite r-europepmc r=3.6 rpy2 vcftools
Rscript -e 'install.packages(c("data.table", "ggplot2", "ggsignif", "ggrepel","Matrix", "igraph", "network", "GGally", "sna","tidyr","ggraph","lme4","ggpubr","pheatmap","factoextra", "R.utils"), repos="https://cloud.r-project.org")'
Rscript -e 'if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager", repos="https://cloud.r-project.org");BiocManager::install(c("AnnotationForge","clusterProfiler","ggtree"))'
Rscript -e 'install.packages("bigsnpr", dependence=T, repos="https://cloud.r-project.org")'
Rscript -e 'install.packages("https://cran.r-project.org/src/contrib/Archive/FactoMineR/FactoMineR_1.42.tar.gz", repos=NULL)'
echo "export PATH=`pwd`/utils:\$PATH" >> ~/.bashrc
echo "export LD_LIBRARY_PATH=`pwd`/utils/libs:\$LD_LIBRARY_PATH" >> ~/.bashrc
source ~/.bashrc
Rscript -e "install.packages(c('shiny','bslib','shinyFiles','shinyalert'), repos='https://mirrors.tuna.tsinghua.edu.cn/CRAN/')"
Rscript -e "shiny::runApp('MRBIGR-I/app.R', host = '0.0.0.0', port = 3838)"
The workflow of MRBIGR is illustrated in above. MRBIGR begins with ① genotypic and phenotypic data, which undergo preprocessing steps in ② genotypic and ③ phenotypic data process modules, such as quality control, format conversion, and multidimensional analysis, etc.. ④ Genome-wide association studies (GWAS) are then performed, ⑤ followed by Mendelian randomization (MR) to infer causal relationships. ⑥ An MR-based network is subsequently constructed, and ⑦ Gene Ontology (GO) analysis is used to explore functional characteristics. Finally, ⑧ various visualization tools, including Manhattan plots, heatmaps, and network diagrams, are employed to present the results, providing comprehensive support for multi-omics data exploration and analysis.
Before using MRBIGR, you can read the data preparation file to understand the data types supported by MRBIGR and how to use MRBIGR for format conversion. To reproduce the images in the MRBIGR paper, you can follow the instruments in reproduce/maize.sh
or reproduce/rice.sh
.
You can also refer to the online website for more usage about MRBIGR.
Any question please open a issue or contact Feng Xu (xufeng9527(at)cau.edu.cn).
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。