1 Star 0 Fork 0

CrazyHsu/MRBIGR

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
贡献代码
同步代码
CrazyHsu-crazyhsu CrazyHsu update 240cf93 5个月前
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README

MRBIGR: Mendelian Randomization-Based Inference of Genetic Regulation

MRBIGR is a multifunctional toolkit for pre-GWAS, GWAS and post-GWAS of both traditional and multi-omics data. MRBIGR provides all the components needed to build a complete GWAS pipeline, and integrates with rich post-GWAS analysis tools such as significantly associated locus (SAL) annotation and haplotype analysis. In particular, Mendelian randomization (MR) analysis, MR-based network construction, module identification and gene ontology analysis are proposed for further genetic regulation studies. Additionally, it also produces rich plots for visualization of the analysis results and other formatted data.

MRBIGR

Installation

Installation using docker (recommended)

git clone https://gitee.com/crazyhsu/MRBIGR.git
cd MRBIGR
docker build -t mrbigr_image .
curr_dir=$(pwd)
docker run -dit --name mrbigr_env -p 3838:3838 \
    -v $curr_dir/MRBIGR_data:/root/MRBIGR/MRBIGR_data \
    -v $curr_dir/MRBIGR_output:/root/MRBIGR/MRBIGR_output \
    -v $curr_dir/MRBIGR_log:/root/MRBIGR/MRBIGR_log \
    -e SHINY_INPUT_PATH=/root/MRBIGR/MRBIGR_data \
    -e SHINY_OUTPUT_PATH=/root/MRBIGR/MRBIGR_output \
    -e SHINY_LOG_PATH=/root/MRBIGR/MRBIGR_log \
    -e SHINY_ROOT_PATH=/root/MRBIGR \
    mrbigr_image:latest

If no exception is thrown out, please enter the http://localhost:3838 in the browser and then you will see the following interface: MRBIGR GUI

Note: If you encounter the issue like

#0 building with "default" instance using docker driver

#1 [internal] load build definition from Dockerfile
#1 transferring dockerfile: 1.10kB done
#1 DONE 0.2s

#2 [internal] load metadata for docker.io/crazyhsu/mrbigr_env:v1.2
#2 ERROR: failed to authorize: failed to fetch anonymous token: Get "https://auth.docker.io/token?scope=repository%3Acrazyhsu%2Fmrbigr_env%3Apull&service=registry.docker.io": dial tcp [2a03:2880:f130:83:face:b00c:0:25de]:443: connectex: A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond.
------
 > [internal] load metadata for docker.io/crazyhsu/mrbigr_env:v1.2:
------
Dockerfile:1
--------------------
   1 | >>> FROM crazyhsu/mrbigr_env:v1.2
   2 |     
   3 |     ENV CONDA_DEFAULT_ENV=mrbigr
--------------------
ERROR: failed to solve: crazyhsu/mrbigr_env:v1.2: failed to authorize: failed to fetch anonymous token: Get "https://auth.docker.io/token?scope=repository%3Acrazyhsu%2Fmrbigr_env%3Apull&service=registry.docker.io": dial tcp [2a03:2880:f130:83:face:b00c:0:25de]:443: connectex: A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond.

Please try the following code:

git clone https://gitee.com/crazyhsu/MRBIGR.git
cd MRBIGR
docker pull crazyhsu/mrbigr_env:v1.2  # direct pull the images without authorize
docker build -t mrbigr_image .
# or
wget https://zenodo.org/records/13955396/files/mrbigr_env_v1.2.tar
docker load -i mrbigr_env_v1.2.tar
docker build -t mrbigr_image .

Then run the docker container:

curr_dir=$(pwd)
docker run -dit --name mrbigr_env -p 3838:3838 \
    -v $curr_dir/MRBIGR_data:/root/MRBIGR/MRBIGR_data \
    -v $curr_dir/MRBIGR_output/demo:/root/MRBIGR/MRBIGR_output/demo \
    -v $curr_dir/MRBIGR_log:/root/MRBIGR/MRBIGR_log \
    -e SHINY_INPUT_PATH=/root/MRBIGR/MRBIGR_data \
    -e SHINY_OUTPUT_PATH=/root/MRBIGR/MRBIGR_output/demo \
    -e SHINY_LOG_PATH=/root/MRBIGR/MRBIGR_log \
    -e SHINY_ROOT_PATH=/root/MRBIGR \
    mrbigr_image:latest

Installation using conda

git clone https://gitee.com/crazyhsu/MRBIGR.git
cd MRBIGR
conda create -n mrbigr python=3.7 -y
conda activate mrbigr
python setup.py build
python setup.py install

pip install pyranges
conda install -y -c conda-forge r-rcppeigen r-xml r-rsqlite r-europepmc r=3.6 rpy2 vcftools
Rscript -e 'install.packages(c("data.table", "ggplot2", "ggsignif", "ggrepel","Matrix", "igraph", "network", "GGally", "sna","tidyr","ggraph","lme4","ggpubr","pheatmap","factoextra", "R.utils"), repos="https://cloud.r-project.org")'
Rscript -e 'if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager", repos="https://cloud.r-project.org");BiocManager::install(c("AnnotationForge","clusterProfiler","ggtree"))'
Rscript -e 'install.packages("bigsnpr", dependence=T, repos="https://cloud.r-project.org")'
Rscript -e 'install.packages("https://cran.r-project.org/src/contrib/Archive/FactoMineR/FactoMineR_1.42.tar.gz", repos=NULL)'

echo "export PATH=`pwd`/utils:\$PATH" >> ~/.bashrc
echo "export LD_LIBRARY_PATH=`pwd`/utils/libs:\$LD_LIBRARY_PATH" >> ~/.bashrc
source ~/.bashrc

Rscript -e "install.packages(c('shiny','bslib','shinyFiles','shinyalert'), repos='https://mirrors.tuna.tsinghua.edu.cn/CRAN/')"

Rscript -e "shiny::runApp('MRBIGR-I/app.R', host = '0.0.0.0', port = 3838)"

Usage

MRBIGR-workflow The workflow of MRBIGR is illustrated in above. MRBIGR begins with genotypic and phenotypic data, which undergo preprocessing steps in genotypic and phenotypic data process modules, such as quality control, format conversion, and multidimensional analysis, etc.. Genome-wide association studies (GWAS) are then performed, followed by Mendelian randomization (MR) to infer causal relationships. An MR-based network is subsequently constructed, and Gene Ontology (GO) analysis is used to explore functional characteristics. Finally, various visualization tools, including Manhattan plots, heatmaps, and network diagrams, are employed to present the results, providing comprehensive support for multi-omics data exploration and analysis.

Before using MRBIGR, you can read the data preparation file to understand the data types supported by MRBIGR and how to use MRBIGR for format conversion. To reproduce the images in the MRBIGR paper, you can follow the instruments in reproduce/maize.sh or reproduce/rice.sh.

You can also refer to the online website for more usage about MRBIGR.

Contact

Any question please open a issue or contact Feng Xu (xufeng9527(at)cau.edu.cn).

空文件

简介

MRBIGR: Mendelian Randomization-Based Inference of Genetic Regulation 展开 收起
取消

发行版

暂无发行版

贡献者

全部

近期动态

不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/crazyhsu/MRBIGR.git
git@gitee.com:crazyhsu/MRBIGR.git
crazyhsu
MRBIGR
MRBIGR
master

搜索帮助