1 Star 0 Fork 0

username-kiki/PaCMAP

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
Apache-2.0

PaCMAP

PaCMAP (Pairwise Controlled Manifold Approximation) is a dimensionality reduction method that can be used for visualization, preserving both local and global structure of the data in original space. PaCMAP optimizes the low dimensional embedding using three kinds of pairs of points: neighbor pairs (pair_neighbors), mid-near pair (pair_MN), and further pairs (pair_FP).

Previous dimensionality reduction techniques focus on either local structure (e.g. t-SNE, LargeVis and UMAP) or global structure (e.g. TriMAP), but not both, although with carefully tuning the parameter in their algorithms that controls the balance between global and local structure, which mainly adjusts the number of considered neighbors. Instead of considering more neighbors to attract for preserving glocal structure, PaCMAP dynamically uses a special group of pairs -- mid-near pairs, to first capture global structure and then refine local structure, which both preserve global and local structure. For a thorough background and discussion on this work, please read the paper.

Release Notes

  • 0.4

    Now supports user-specified nearest neighbor pairs. See section How to use user-specified nearest neighbor below.

    The fit function and the fit_transform function now has an extra parameter save_pairs that decides whether the pairs sampled in this run will be saved to save time for reproducing experiments with other hyperparameters (default to True).

  • 0.3

    Now supports user-specified matrix as initialization through init parameter. The matrix must be an numpy ndarray with the shape (N, 2).

  • 0.2

    Adding adaptive default value for n_neighbors: for large datasets with sample size N > 10000, the default value will be set to 10 + 15 * (log10(N) - 4), rounding to the nearest integer.

  • 0.1

    Initial Release

Installation

You would require the following packages to fully use pacmap on your machine:

  • numpy
  • sklearn
  • annoy
  • numba

You can use pip to install pacmap from PyPI. It will automatically install the dependencies for you:

pip install pacmap

Alternatively, you can use the following command to install these dependencies:

pip install numpy
pip install scikit-learn
pip install annoy
pip install numba

Usage

The pacmap package is designed to be compatible with scikit-learn, meaning that it has a similar interface with functions in the sklearn.manifold module. To run pacmap on your own dataset, you should install the package following the instructions in this paragraph, and then import the module. The following code clip includes a use case about how to use PaCMAP on the COIL-20 dataset:

import pacmap
import numpy as np
import matplotlib.pyplot as plt

# loading preprocessed coil_20 dataset
# you can change it with any dataset that is in the ndarray format, with the shape (N, D)
# where N is the number of samples and D is the dimension of each sample
X = np.load("./data/coil_20.npy", allow_pickle=True)
X = X.reshape(X.shape[0], -1)
y = np.load("./data/coil_20_labels.npy", allow_pickle=True)

# initializing the pacmap instance
# Setting n_neighbors to "None" leads to a default choice shown below in "parameter" section
embedding = pacmap.PaCMAP(n_dims=2, n_neighbors=None, MN_ratio=0.5, FP_ratio=2.0) 

# fit the data (The index of transformed data corresponds to the index of the original data)
X_transformed = embedding.fit_transform(X, init="pca")

# visualize the embedding
fig, ax = plt.subplots(1, 1, figsize=(6, 6))
ax.scatter(X_transformed[:, 0], X_transformed[:, 1], cmap="Spectral", c=y, s=0.6)

Benchmarks

The following images are visualizations of two datasets: MNIST (n=70,000, d=784) and Mammoth (n=10,000, d=3), generated by PaCMAP. The two visualizations demonstrate the local and global structure's preservation ability of PaCMAP respectively.

MNIST

Mammoth

Parameters

The list of the most important parameters is given below. Changing these values will affect the result of dimension reduction significantly, as specified in section 8.3 in our paper.

  • n_dims: the number of dimension of the output. Default to 2.

  • n_neighbors: the number of neighbors considered in the k-Nearest Neighbor graph. Default to 10 for dataset whose sample size is smaller than 10000. For large dataset whose sample size (n) is larger than 10000, the default value is: 10 + 15 * (log10(n) - 4).

  • MN_ratio: the ratio of the number of mid-near pairs to the number of neighbors, n_MN = n_neighbors * MN_ratio . Default to 0.5.

  • FP_ratio: the ratio of the number of further pairs to the number of neighbors, n_FP = n_neighbors * FP_ratio Default to 2.

The initialization is also important to the result, but it's a parameter of the fit and fit_transform function.

  • init: the initialization of the lower dimensional embedding. One of "pca" or "random", or a user-provided numpy ndarray with the shape (N, 2). Default to "random".

Other parameters include:

  • num_iters: number of iterations. Default to 450. 450 iterations is enough for most dataset to converge.
  • pair_neighbors, pair_MN and pair_FP: pre-specified neighbor pairs, mid-near points, and further pairs. Allows user to use their own graphs. Default to None.
  • verbose: print the progress of pacmap. Default to False
  • lr: learning rate of the AdaGrad optimizer. Default to 1.
  • apply_pca: whether pacmap should apply PCA to the data before constructing the k-Nearest Neighbor graph. Using PCA to preprocess the data can largely accelerate the DR process without losing too much accuracy. Notice that this option does not affect the initialization of the optimization process.
  • intermediate: whether pacmap should also output the intermediate stages of the optimization process of the lower dimension embedding. If True, then the output will be a numpy array of the size (n, n_dims, 13), where each slice is a "screenshot" of the output embedding at a particular number of steps, from [0, 10, 30, 60, 100, 120, 140, 170, 200, 250, 300, 350, 450].

How to use user-specified nearest neighbor

In version 0.4, we have provided a new option to allow users to use their own nearest neighbors when mapping large-scale datasets. The following code clip includes a use case about how to use PaCMAP with the user-specified nearest neighbors:

import pacmap
import numpy as np
import matplotlib.pyplot as plt
from annoy import AnnoyIndex

# loading preprocessed coil_20 dataset
X = np.load("./data/coil_20.npy", allow_pickle=True)
X = X.reshape(X.shape[0], -1)
y = np.load("./data/coil_20_labels.npy", allow_pickle=True)

# create nearest neighbor pairs
# here we use AnnoyIndex as an example, but the process can be done by any
# external NN library that provides neighbors into a matrix of the shape
# (n, n_neighbors_extra), where n_neighbors_extra is greater or equal to
# n_neighbors in the following example.

n, dim = X.shape
n_neighbors = 10
tree = AnnoyIndex(dim, metric='euclidean')
for i in range(n):
    tree.add_item(i, X[i, :])
tree.build(20)

nbrs = np.zeros((n, 20), dtype=np.int32)
for i in range(n):
    nbrs_ = tree.get_nns_by_item(i, 20 + 1) # The first nbr is always the point itself
    nbrs[i, :] = nbrs_[1:]

scaled_dist = np.ones((n, n_neighbors)) # No scaling is needed

# Type casting is needed for numba acceleration
X = X.astype(np.float32)
scaled_dist = scaled_dist.astype(np.float32)

# make sure n_neighbors is the same number you want when fitting the data
pair_neighbors = pacmap.sample_neighbors_pair(X, scaled_dist, nbrs, np.int32(n_neighbors))

# initializing the pacmap instance
# feed the pair_neighbors into the instance
embedding = pacmap.PaCMAP(n_dims=2, n_neighbors=n_neighbors, MN_ratio=0.5, FP_ratio=2.0, pair_neighbors=pair_neighbors) 

# fit the data (The index of transformed data corresponds to the index of the original data)
X_transformed = embedding.fit_transform(X, init="pca")

# visualize the embedding
fig, ax = plt.subplots(1, 1, figsize=(6, 6))
ax.scatter(X_transformed[:, 0], X_transformed[:, 1], cmap="Spectral", c=y, s=0.6)

Reproducing the experiments

We have provided the code we use to run experiment for better reproducibility. The code are separated into three parts, in three folders, respectively:

  • data, which includes all the datasets we used, preprocessed into the file format each DR method use. Notice that since the Mouse single cell RNA sequence dataset is too big (~4GB), you may need to download from the link here. MNIST and FMNIST dataset is compressed, and you need to unzip them before using. COIL-100 dataset is still too large after compressed, please preprocess it using the file Preprocessing.ipynb on your own.
  • experiments, which includes all the scripts we use to produce DR results.
  • evaluation, which includes all the scripts we use to evaluate DR results, stated in Section 8 in our paper.

After downloading the code, you may need to specify some of the paths in the script to make them fully functional.

Citation

If you use PaCMAP in your publication, or you used the implementation in this repository, please cite our preprint here:

@misc{wang2020understanding,
      title={Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization}, 
      author={Yingfan Wang and Haiyang Huang and Cynthia Rudin and Yaron Shaposhnik},
      year={2020},
      eprint={2012.04456},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

License

Please see the license file.

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright 2020 Yingfan Wang, Haiyang Huang, Cynthia Rudin, Yaron Shaposhnik Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

简介

暂无描述 展开 收起
README
Apache-2.0
取消

发行版

暂无发行版

贡献者

全部

近期动态

不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/csdn_kiki/PaCMAP.git
git@gitee.com:csdn_kiki/PaCMAP.git
csdn_kiki
PaCMAP
PaCMAP
master

搜索帮助