1 Star 2 Fork 0

David/ProPainter

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
BSD-3-Clause

ProPainter: Improving Propagation and Transformer for Video Inpainting

S-Lab, Nanyang Technological University 
ICCV 2023

⭐ If ProPainter is helpful to your projects, please help star this repo. Thanks! 🤗

:open_book: For more visual results, go checkout our project page


Update

  • 2023.11.09: Integrated to :man_artist: OpenXLab. Try out online demo! OpenXLab
  • 2023.11.09: Integrated to :hugs: Hugging Face. Try out online demo! Hugging Face
  • 2023.09.24: We remove the watermark removal demos officially to prevent the misuse of our work for unethical purposes.
  • 2023.09.21: Add features for memory-efficient inference. Check our GPU memory requirements. 🚀
  • 2023.09.07: Our code and model are publicly available. 🐳
  • 2023.09.01: This repo is created.

TODO

  • Make a Colab demo.
  • Make a interactive Gradio demo.
  • Update features for memory-efficient inference.

Results

👨🏻‍🎨 Object Removal

🎨 Video Completion

Overview

overall_structure

Dependencies and Installation

  1. Clone Repo

    git clone https://github.com/sczhou/ProPainter.git
    
  2. Create Conda Environment and Install Dependencies

    # create new anaconda env
    conda create -n propainter python=3.8 -y
    conda activate propainter
    
    # install python dependencies
    pip3 install -r requirements.txt
    
    • CUDA >= 9.2
    • PyTorch >= 1.7.1
    • Torchvision >= 0.8.2
    • Other required packages in requirements.txt

Get Started

Prepare pretrained models

Download our pretrained models from Releases V0.1.0 to the weights folder. (All pretrained models can also be automatically downloaded during the first inference.)

The directory structure will be arranged as:

weights
   |- ProPainter.pth
   |- recurrent_flow_completion.pth
   |- raft-things.pth
   |- i3d_rgb_imagenet.pt (for evaluating VFID metric)
   |- README.md

🏂 Quick test

We provide some examples in the inputs folder. Run the following commands to try it out:

# The first example (object removal)
python inference_propainter.py --video inputs/object_removal/bmx-trees --mask inputs/object_removal/bmx-trees_mask 
# The second example (video completion)
python inference_propainter.py --video inputs/video_completion/running_car.mp4 --mask inputs/video_completion/mask_square.png --height 240 --width 432

The results will be saved in the results folder. To test your own videos, please prepare the input mp4 video (or split frames) and frame-wise mask(s).

If you want to specify the video resolution for processing or avoid running out of memory, you can set the video size of --width and --height:

# process a 576x320 video; set --fp16 to use fp16 (half precision) during inference.
python inference_propainter.py --video inputs/video_completion/running_car.mp4 --mask inputs/video_completion/mask_square.png --height 320 --width 576 --fp16

🚀 Memory-efficient inference

Video inpainting typically requires a significant amount of GPU memory. Here, we offer various features that facilitate memory-efficient inference, effectively avoiding the Out-Of-Memory (OOM) error. You can use the following options to reduce memory usage further:

  • Reduce the number of local neighbors through decreasing the --neighbor_length (default 10).
  • Reduce the number of global references by increasing the --ref_stride (default 10).
  • Set the --resize_ratio (default 1.0) to resize the processing video.
  • Set a smaller video size via specifying the --width and --height.
  • Set --fp16 to use fp16 (half precision) during inference.
  • Reduce the frames of sub-videos --subvideo_length (default 80), which effectively decouples GPU memory costs and video length.

Blow shows the estimated GPU memory requirements for different sub-video lengths with fp32/fp16 precision:

Resolution 50 frames 80 frames
1280 x 720 28G / 19G OOM / 25G
720 x 480 11G / 7G 13G / 8G
640 x 480 10G / 6G 12G / 7G
320 x 240 3G / 2G 4G / 3G

Dataset preparation

Dataset YouTube-VOS DAVIS
Description For training (3,471) and evaluation (508) For evaluation (50 in 90)
Images [Official Link] (Download train and test all frames) [Official Link] (2017, 480p, TrainVal)
Masks [Google Drive] [Baidu Disk] (For reproducing paper results; provided in ProPainter paper)

The training and test split files are provided in datasets/<dataset_name>. For each dataset, you should place JPEGImages to datasets/<dataset_name>. Resize all video frames to size 432x240 for training. Unzip downloaded mask files to datasets.

The datasets directory structure will be arranged as: (Note: please check it carefully)

datasets
   |- davis
      |- JPEGImages_432_240
         |- <video_name>
            |- 00000.jpg
            |- 00001.jpg
      |- test_masks
         |- <video_name>
            |- 00000.png
            |- 00001.png   
      |- train.json
      |- test.json
   |- youtube-vos
      |- JPEGImages_432_240
         |- <video_name>
            |- 00000.jpg
            |- 00001.jpg
      |- test_masks
         |- <video_name>
            |- 00000.png
            |- 00001.png
      |- train.json
      |- test.json   

Training

Our training configures are provided in train_flowcomp.json (for Recurrent Flow Completion Network) and train_propainter.json (for ProPainter).

Run one of the following commands for training:

 # For training Recurrent Flow Completion Network
 python train.py -c configs/train_flowcomp.json
 # For training ProPainter
 python train.py -c configs/train_propainter.json

You can run the same command to resume your training.

To speed up the training process, you can precompute optical flow for the training dataset using the following command:

 # Compute optical flow for training dataset
 python scripts/compute_flow.py --root_path <dataset_root> --save_path <save_flow_root> --height 240 --width 432

Evaluation

Run one of the following commands for evaluation:

 # For evaluating flow completion model
 python scripts/evaluate_flow_completion.py --dataset <dataset_name> --video_root <video_root> --mask_root <mask_root> --save_results
 # For evaluating ProPainter model
 python scripts/evaluate_propainter.py --dataset <dataset_name> --video_root <video_root> --mask_root <mask_root> --save_results

The scores and results will also be saved in the results_eval folder. Please --save_results for further evaluating temporal warping error.

Citation

If you find our repo useful for your research, please consider citing our paper:

@inproceedings{zhou2023propainter,
   title={{ProPainter}: Improving Propagation and Transformer for Video Inpainting},
   author={Zhou, Shangchen and Li, Chongyi and Chan, Kelvin C.K and Loy, Chen Change},
   booktitle={Proceedings of IEEE International Conference on Computer Vision (ICCV)},
   year={2023}
}

License

This project is licensed under NTU S-Lab License 1.0. Redistribution and use should follow this license.

Contact

If you have any questions, please feel free to reach me out at shangchenzhou@gmail.com.

Acknowledgement

This code is based on E2FGVI and STTN. Some code are brought from BasicVSR++. Thanks for their awesome works.

Special thanks to Yihang Luo for his valuable contributions to build and maintain the Gradio demos for ProPainter.

# S-Lab License 1.0 Copyright 2023 S-Lab Redistribution and use for non-commercial purpose in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.\ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 4. In the event that redistribution and/or use for commercial purpose in source or binary forms, with or without modification is required, please contact the contributor(s) of the work. --- For the commercial use of the code, please consult Prof. Chen Change Loy (ccloy@ntu.edu.sg)

简介

视频图像擦除 展开 收起
README
BSD-3-Clause
取消

发行版

暂无发行版

贡献者

全部

语言

近期动态

不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/davidqiang/ProPainter.git
git@gitee.com:davidqiang/ProPainter.git
davidqiang
ProPainter
ProPainter
main

搜索帮助