10 Star 20 Fork 12

DeepSpark/DeepSparkInference

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README

SVT Base (IGIE)

Model Description

SVT Base is a mid-sized variant of the Sparse Vision Transformer (SVT) series, designed to combine the expressive power of Vision Transformers (ViTs) with the efficiency of sparse attention mechanisms. By employing sparse attention and multi-stage feature extraction, SVT-Base reduces computational complexity while retaining global modeling capabilities.

Supported Environments

Iluvatar GPU IXUCA SDK
MR-V100 4.2.0

Model Preparation

Prepare Resources

Pretrained model: https://download.openmmlab.com/mmclassification/v0/twins/twins-svt-base_3rdparty_8xb128_in1k_20220126-e31cc8e9.pth

Dataset: https://www.image-net.org/download.php to download the validation dataset.

Install Dependencies

# Install libGL
## CentOS
yum install -y mesa-libGL
## Ubuntu
apt install -y libgl1-mesa-glx

pip3 install -r requirements.txt

Model Conversion

# git clone mmpretrain
git clone -b v0.24.0 https://github.com/open-mmlab/mmpretrain.git

# export onnx model
python3 export.py --cfg mmpretrain/configs/twins/twins-svt-base_8xb128_in1k.py --weight twins-svt-base_3rdparty_8xb128_in1k_20220126-e31cc8e9.pth --output svt_base.onnx

# Use onnxsim optimize onnx model
onnxsim svt_base.onnx svt_base_opt.onnx

Model Inference

export DATASETS_DIR=/Path/to/imagenet_val/

FP16

# Accuracy
bash scripts/infer_svt_base_fp16_accuracy.sh
# Performance
bash scripts/infer_svt_base_fp16_performance.sh

Model Results

Model BatchSize Precision FPS Top-1(%) Top-5(%)
SVT Base 32 FP16 673.165 82.865 96.213

References

马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/deep-spark/deepsparkinference.git
git@gitee.com:deep-spark/deepsparkinference.git
deep-spark
deepsparkinference
DeepSparkInference
master

搜索帮助

371d5123 14472233 46e8bd33 14472233