The paper "Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles" introduces a model named Deep Relative Distance Learning (DRDL), specifically designed for the problem of vehicle re-identification. DRDL employs a dual-branch deep convolutional network architecture, combined with a coupled clusters loss function and a mixed difference network structure, effectively mapping vehicle images into Euclidean space for similarity measurement.
Iluvatar GPU | IXUCA SDK |
---|---|
MR-V100 | 4.2.0 |
Pretrained model: https://github.com/CaptainEven/RepNet-MDNet-VehicleReID
Dataset: https://www.pkuml.org/resources/pku-vehicleid.html to download the VehicleID dataset.
pip3 install -r requirements.txt
python3 export.py --weight epoch_14.pth --output repnet.onnx
# Use onnxsim optimize onnx model
onnxsim repnet.onnx repnet_opt.onnx
export DATASETS_DIR=/Path/to/VehicleID/
# Accuracy
bash scripts/infer_repnet_fp16_accuracy.sh
# Performance
bash scripts/infer_repnet_fp16_performance.sh
Model | BatchSize | Precision | FPS | Acc(%) |
---|---|---|---|---|
RepNet | 32 | FP16 | 1373.579 | 99.88 |
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。