代码拉取完成,页面将自动刷新
Yolov8 combines speed and accuracy in real-time object detection tasks. With a focus on simplicity and efficiency, this model employs a single neural network to make predictions, enabling fast and accurate identification of objects in images or video streams.
Iluvatar GPU | IXUCA SDK |
---|---|
MR-V100 | 4.2.0 |
Pretrained model: https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt
Dataset: http://images.cocodataset.org/zips/val2017.zip to download the validation dataset.
# Install libGL
## CentOS
yum install -y mesa-libGL
## Ubuntu
apt install -y libgl1-mesa-glx
pip3 install -r requirements.txt
python3 export.py --weight yolov8s.pt --batch 32
export DATASETS_DIR=/Path/to/coco/
# Accuracy
bash scripts/infer_yolov8_fp16_accuracy.sh
# Performance
bash scripts/infer_yolov8_fp16_performance.sh
# Accuracy
bash scripts/infer_yolov8_int8_accuracy.sh
# Performance
bash scripts/infer_yolov8_int8_performance.sh
Model | BatchSize | Precision | FPS | MAP@0.5 | MAP@0.5:0.95 |
---|---|---|---|---|---|
YOLOv8 | 32 | FP16 | 1002.98 | 0.617 | 0.449 |
YOLOv8 | 32 | INT8 | 1392.29 | 0.604 | 0.429 |
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。