YOLOv9 represents a major leap in real-time object detection by introducing innovations like Programmable Gradient Information (PGI) and the Generalized Efficient Layer Aggregation Network (GELAN), significantly improving efficiency, accuracy, and adaptability. Developed by an open-source team and building on the YOLOv5 codebase, it sets new benchmarks on the MS COCO dataset. YOLOv9's architecture effectively addresses information loss in deep neural networks, enhancing learning capacity and ensuring higher detection accuracy.
Iluvatar GPU | IXUCA SDK |
---|---|
MR-V100 | 4.2.0 |
Pretrained model: https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov9s.pt
pip3 install -r requirements.txt
python3 export.py --weight yolov9s.pt --batch 32
export DATASETS_DIR=/Path/to/coco/
# Accuracy
bash scripts/infer_yolov9_fp16_accuracy.sh
# Performance
bash scripts/infer_yolov9_fp16_performance.sh
Model | BatchSize | Precision | FPS | IOU@0.5 | IOU@0.5:0.95 |
---|---|---|---|---|---|
YOLOv9 | 32 | FP16 | 814.42 | 0.625 | 0.464 |
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。