1 Star 0 Fork 0

deeplearningrepos/GPflow

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
Apache-2.0

CircleCI Coverage Status Documentation Status Slack Status

Website | Documentation (release) | Documentation (develop) | Glossary

GPflow is a package for building Gaussian process models in Python, using TensorFlow. It was originally created by James Hensman and Alexander G. de G. Matthews. It is now actively maintained by (in alphabetical order) Alexis Boukouvalas, Artem Artemev, Eric Hambro, James Hensman, Joel Berkeley, Mark van der Wilk, ST John, and Vincent Dutordoir. GPflow would not be the same without the community. We are grateful to all contributors who have helped shape GPflow.

GPflow is an open source project. If you have relevant skills and are interested in contributing then please do contact us (see "The GPflow community" section below).

What does GPflow do?

GPflow implements modern Gaussian process inference for composable kernels and likelihoods. The online documentation (develop)/(master) contains more details.

GPflow 2.0 uses TensorFlow 2.1+ for running computations, which allows fast execution on GPUs, and uses Python ≥ 3.6.

Install GPflow 2

We have experienced issues with pip's pre-2020 dependency resolver; if you encounter issues with incompatible third-party package versions when installing GPflow using the pip commands below, try adding the --use-feature=2020-resolver argument.

Latest release from PyPI

pip install gpflow

The current release series, 2.x, requires TensorFlow ≥ 2.1 and TensorFlow Probability ≥ 0.10.1.

Latest source from GitHub

Be aware that the develop branch may change regularly, and new commits may break your code.

In a check-out of the develop branch of the GPflow GitHub repository, run

pip install -e .

Alternatively, you can install the latest GitHub develop version using pip:

pip install git+https://github.com/GPflow/GPflow.git@develop#egg=gpflow

This will automatically install all required dependencies.

Install the last GPflow version compatible with TensorFlow 1:

We have stopped development and support for GPflow based on TensorFlow 1.x.

The latest available release is v1.5.1. Documentation and tutorials will remain available.

Getting Started with GPflow 2.0

There is an "Intro to GPflow 2.0" Jupyter notebook; check it out for details. To convert your code from GPflow 1 check the GPflow 2 upgrade guide.

The GPflow Community

Getting help

Bugs, feature requests, pain points, annoying design quirks, etc: Please use GitHub issues to flag up bugs/issues/pain points, suggest new features, and discuss anything else related to the use of GPflow that in some sense involves changing the GPflow code itself. You can make use of the labels such as bug, discussion, feature, feedback, etc. We positively welcome comments or concerns about usability, and suggestions for changes at any level of design.

We aim to respond to issues promptly, but if you believe we may have forgotten about an issue, please feel free to add another comment to remind us.

"How-to-use" questions: Please use Stack Overflow (gpflow tag) to ask questions that relate to "how to use GPflow", i.e. questions of understanding rather than issues that require changing GPflow code. (If you are unsure where to ask, you are always welcome to open a GitHub issue; we may then ask you to move your question to Stack Overflow.)

Slack workspace

We have a public GPflow slack workspace. Please use this invite link if you'd like to join, whether to ask short informal questions or to be involved in the discussion and future development of GPflow.

Contributing

All constructive input is gratefully received. For more information, see the notes for contributors.

Projects using GPflow

A few projects building on GPflow and demonstrating its usage are listed below.

Note that the new GPflow 2.0 release was published on 31 March 2020. The projects listed below have not been checked for compatibility with the 2.0 branch, and it is up to their authors whether they will upgrade to GPflow 2.0. We encourage all projects to upgrade, as GPflow 2.0 contains numerous improvements on GPflow 1.

Project Description
GPflowOpt Bayesian Optimization using GPflow (stable release requires GPflow 0.5).
Trieste Bayesian optimization with TensorFlow, with out-of-the-box support for GPflow (2.x) models.
VFF Variational Fourier Features for Gaussian Processes.
Doubly-Stochastic-DGP Deep Gaussian Processes with Doubly Stochastic Variational Inference.
BranchedGP Gaussian processes with branching kernels.
heterogp Heteroscedastic noise for sparse variational GP.
widedeepnetworks Measuring the relationship between random wide deep neural networks and GPs.
orth_decoupled_var_gps Variationally sparse GPs with orthogonally decoupled bases
kernel_learning Implementation of "Differentiable Compositional Kernel Learning for Gaussian Processes".
VBPP Implementation of "Variational Bayes for Point Processes".
DGPs_with_IWVI Deep Gaussian Processes with Importance-Weighted Variational Inference
kerndisc Library for automated kernel structure discovery in univariate data
Gaussian Process Regression on Molecules GPs to predict molecular properties by creating a custom-defined Tanimoto kernel to operate on Morgan fingerprints

If you would like your project listed here, let us know - or simply open a pull request that adds your project to the table above!

Compatibility

GPflow heavily depends on TensorFlow and as far as TensorFlow supports forward compatibility, GPflow should as well. The version of GPflow can give you a hint about backward compatibility. If the major version has changed then you need to check the release notes to find out how the API has been changed.

Unfortunately, there is no such thing as backward compatibility for GPflow models, which means that a model implementation can change without changing interfaces. In other words, the TensorFlow graph can be different for the same models from different versions of GPflow.

Citing GPflow

To cite GPflow, please reference the JMLR paper. Sample Bibtex is given below:

@ARTICLE{GPflow2017,
  author = {Matthews, Alexander G. de G. and {van der Wilk}, Mark and Nickson, Tom and
	Fujii, Keisuke. and {Boukouvalas}, Alexis and {Le{\'o}n-Villagr{\'a}}, Pablo and
	Ghahramani, Zoubin and Hensman, James},
    title = "{{GP}flow: A {G}aussian process library using {T}ensor{F}low}",
  journal = {Journal of Machine Learning Research},
  year    = {2017},
  month = {apr},
  volume  = {18},
  number  = {40},
  pages   = {1-6},
  url     = {http://jmlr.org/papers/v18/16-537.html}
}

Since the publication of the GPflow paper, the software has been significantly extended with the framework for interdomain approximations and multioutput priors. We review the framework and describe the design in an arXiv paper, which can be cited by users.

@article{GPflow2020multioutput,
  author = {{van der Wilk}, Mark and Dutordoir, Vincent and John, ST and
            Artemev, Artem and Adam, Vincent and Hensman, James},
  title = {A Framework for Interdomain and Multioutput {G}aussian Processes},
  year = {2020},
  journal = {arXiv:2003.01115},
  url = {https://arxiv.org/abs/2003.01115}
}
Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "{}" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright {yyyy} {name of copyright owner} Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

简介

Gaussian processes in TensorFlow 展开 收起
README
Apache-2.0
取消

发行版

暂无发行版

贡献者

全部

近期动态

不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/deeplearningrepos/GPflow.git
git@gitee.com:deeplearningrepos/GPflow.git
deeplearningrepos
GPflow
GPflow
master

搜索帮助