1 Star 0 Fork 0

ftgreat/Megatron-LM

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
pretrain_bert.py 6.41 KB
一键复制 编辑 原始数据 按行查看 历史
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Pretrain BERT"""
from functools import partial
import torch
import torch.nn.functional as F
from megatron import get_args
from megatron import get_tokenizer
from megatron import print_rank_0
from megatron import get_timers
from megatron.core import tensor_parallel
from megatron.core.enums import ModelType
import megatron.model
from megatron.core.models.bert.bert_model import BertModel
from megatron.training import pretrain
from megatron.utils import average_losses_across_data_parallel_group
from megatron.arguments import core_transformer_config_from_args
from megatron.core.transformer.spec_utils import import_module
from megatron.core.models.bert.bert_layer_specs import bert_layer_with_transformer_engine_spec, bert_layer_local_spec
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.core.datasets.bert_dataset import BERTMaskedWordPieceDataset, BERTMaskedWordPieceDatasetConfig
from megatron.core import mpu, tensor_parallel
def model_provider(pre_process=True, post_process=True):
"""Build the model."""
print_rank_0('building BERT model ...')
args = get_args()
config = core_transformer_config_from_args(args)
num_tokentypes = 2 if args.bert_binary_head else 0
if args.use_mcore_models:
if args.spec is None:
transformer_layer_spec = bert_layer_with_transformer_engine_spec #default spec
elif args.spec[0] == 'local':
print_rank_0('Using Local spec for transformer layers')
transformer_layer_spec = bert_layer_local_spec
else :
transformer_layer_spec = import_module(args.spec)
model = BertModel(
config=config,
transformer_layer_spec=transformer_layer_spec,
vocab_size=args.padded_vocab_size,
max_sequence_length=args.max_position_embeddings,
num_tokentypes=num_tokentypes,
add_binary_head=args.bert_binary_head,
share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights,
parallel_output=True,
pre_process=pre_process,
post_process=post_process)
else:
model = megatron.model.BertModel(
config=config,
num_tokentypes=num_tokentypes,
add_binary_head=args.bert_binary_head,
parallel_output=True,
pre_process=pre_process,
post_process=post_process)
return model
def get_batch(data_iterator):
"""Build the batch."""
# Items and their type.
keys = ['text', 'types', 'labels',
'is_random', 'loss_mask', 'padding_mask']
datatype = torch.int64
# Broadcast data.
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
data_b = tensor_parallel.broadcast_data(keys, data, datatype)
# Unpack.
tokens = data_b['text'].long()
types = data_b['types'].long()
sentence_order = data_b['is_random'].long()
loss_mask = data_b['loss_mask'].float()
lm_labels = data_b['labels'].long()
padding_mask = data_b['padding_mask'].long()
return tokens, types, sentence_order, loss_mask, lm_labels, padding_mask
def loss_func(loss_mask, sentence_order, output_tensor):
lm_loss_, sop_logits = output_tensor
lm_loss_ = lm_loss_.float()
loss_mask = loss_mask.float()
lm_loss = torch.sum(
lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum()
if sop_logits is not None:
sop_loss = F.cross_entropy(sop_logits.view(-1, 2).float(),
sentence_order.view(-1),
ignore_index=-1)
sop_loss = sop_loss.float()
loss = lm_loss + sop_loss
averaged_losses = average_losses_across_data_parallel_group(
[lm_loss, sop_loss])
return loss, {'lm loss': averaged_losses[0],
'sop loss': averaged_losses[1]}
else:
loss = lm_loss
averaged_losses = average_losses_across_data_parallel_group(
[lm_loss])
return loss, {'lm loss': averaged_losses[0]}
def forward_step(data_iterator, model):
"""Forward step."""
args = get_args()
timers = get_timers()
# Get the batch.
timers('batch-generator', log_level=2).start()
tokens, types, sentence_order, loss_mask, lm_labels, padding_mask = get_batch(
data_iterator)
timers('batch-generator').stop()
if not args.bert_binary_head:
types = None
# Forward pass through the model.
output_tensor = model(tokens, padding_mask,
tokentype_ids=types, lm_labels=lm_labels)
return output_tensor, partial(loss_func, loss_mask, sentence_order)
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build train, valid, and test datasets."""
args = get_args()
tokenizer = get_tokenizer()
config = BERTMaskedWordPieceDatasetConfig(
is_built_on_rank=lambda: mpu.get_tensor_model_parallel_rank() == 0,
random_seed=args.seed,
sequence_length=args.seq_length,
blend=args.data_path,
blend_per_split=[
args.train_data_path,
args.valid_data_path,
args.test_data_path,
],
split=args.split,
path_to_cache=args.data_cache_path,
mock=False,
tokenizer=tokenizer,
masking_probability=args.mask_prob,
short_sequence_probability=args.short_seq_prob,
masking_max_ngram=3,
masking_do_full_word=True,
masking_do_permutation=False,
masking_use_longer_ngrams=False,
masking_use_geometric_distribution=False,
classification_head=args.bert_binary_head,
)
print_rank_0('> building train, validation, and test datasets '
'for BERT ...')
train_ds, valid_ds, test_ds = BlendedMegatronDatasetBuilder(
BERTMaskedWordPieceDataset,
train_val_test_num_samples,
config,
).build()
print_rank_0("> finished creating BERT datasets ...")
return train_ds, valid_ds, test_ds
if __name__ == "__main__":
# Temporary for transition to core datasets
train_valid_test_datasets_provider.is_distributed = True
pretrain(train_valid_test_datasets_provider, model_provider,
ModelType.encoder_or_decoder,
forward_step, args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/ftgreat/Megatron-LM.git
git@gitee.com:ftgreat/Megatron-LM.git
ftgreat
Megatron-LM
Megatron-LM
main

搜索帮助