代码拉取完成,页面将自动刷新
/*
* Copyright (c) Huawei Technologies Co., Ltd. 2022-2023. All rights reserved.
*
* Function : z = x + y
* This sample is a very basic sample that implements vector add on Ascend plaform.
*/
#include "kernel_operator.h"
#include "kernel_add_tiling.h"
using namespace AscendC;
constexpr int32_t BUFFER_NUM = 2; // tensor num for each queue
class KernelAdd {
public:
__aicore__ inline KernelAdd() {}
__aicore__ inline void Init(GM_ADDR x, GM_ADDR y, GM_ADDR z, uint32_t totalLength, uint32_t tileNum)
{
ASSERT(GetBlockNum() != 0 && "block dim can not be zero!");
this->blockLength = totalLength / GetBlockNum();
this->tileNum = tileNum;
ASSERT(tileNum != 0 && "tile num can not be zero!");
this->tileLength = this->blockLength / tileNum / BUFFER_NUM;
// get start index for current core, core parallel
xGm.SetGlobalBuffer((__gm__ half*)x + this->blockLength * GetBlockIdx(), this->blockLength);
yGm.SetGlobalBuffer((__gm__ half*)y + this->blockLength * GetBlockIdx(), this->blockLength);
zGm.SetGlobalBuffer((__gm__ half*)z + this->blockLength * GetBlockIdx(), this->blockLength);
// pipe alloc memory to queue, the unit is Bytes
pipe.InitBuffer(inQueueX, BUFFER_NUM, this->tileLength * sizeof(half));
pipe.InitBuffer(inQueueY, BUFFER_NUM, this->tileLength * sizeof(half));
pipe.InitBuffer(outQueueZ, BUFFER_NUM, this->tileLength * sizeof(half));
}
__aicore__ inline void Process()
{
// loop count need to be doubled, due to double buffer
int32_t loopCount = this->tileNum * BUFFER_NUM;
// tiling strategy, pipeline parallel
for (int32_t i = 0; i < loopCount; i++) {
CopyIn(i);
Compute(i);
CopyOut(i);
}
}
private:
__aicore__ inline void CopyIn(int32_t progress)
{
// alloc tensor from queue memory
LocalTensor<half> xLocal = inQueueX.AllocTensor<half>();
LocalTensor<half> yLocal = inQueueY.AllocTensor<half>();
// copy progress_th tile from global tensor to local tensor
DataCopy(xLocal, xGm[progress * this->tileLength], this->tileLength);
DataCopy(yLocal, yGm[progress * this->tileLength], this->tileLength);
// enque input tensors to VECIN queue
inQueueX.EnQue(xLocal);
inQueueY.EnQue(yLocal);
}
__aicore__ inline void Compute(int32_t progress)
{
// deque input tensors from VECIN queue
LocalTensor<half> xLocal = inQueueX.DeQue<half>();
LocalTensor<half> yLocal = inQueueY.DeQue<half>();
LocalTensor<half> zLocal = outQueueZ.AllocTensor<half>();
// call Add instr for computation
Add(zLocal, xLocal, yLocal, this->tileLength);
// enque the output tensor to VECOUT queue
outQueueZ.EnQue<half>(zLocal);
// free input tensors for reuse
inQueueX.FreeTensor(xLocal);
inQueueY.FreeTensor(yLocal);
}
__aicore__ inline void CopyOut(int32_t progress)
{
// deque output tensor from VECOUT queue
LocalTensor<half> zLocal = outQueueZ.DeQue<half>();
// copy progress_th tile from local tensor to global tensor
DataCopy(zGm[progress * this->tileLength], zLocal, this->tileLength);
// free output tensor for reuse
outQueueZ.FreeTensor(zLocal);
}
private:
TPipe pipe;
// create queues for input, in this case depth is equal to buffer num
TQue<QuePosition::VECIN, BUFFER_NUM> inQueueX, inQueueY;
// create queue for output, in this case depth is equal to buffer num
TQue<QuePosition::VECOUT, BUFFER_NUM> outQueueZ;
GlobalTensor<half> xGm, yGm, zGm;
uint32_t blockLength; // number of calculations on each core
uint32_t tileNum; // number of tiles on each core
uint32_t tileLength; // number of calculations in each tile
};
extern "C" __global__ __aicore__ void AddCustom(GM_ADDR x, GM_ADDR y, GM_ADDR z, GM_ADDR workspace, GM_ADDR tiling)
{
GET_TILING_DATA(tilingData, tiling);
KernelAdd op;
op.Init(x, y, z, tilingData.totalLength, tilingData.tileNum);
op.Process();
}
#ifndef __CCE_KT_TEST__
// call of kernel function
void AddCustomDo(uint32_t blockDim, void* l2ctrl, void* stream, uint8_t* x, uint8_t* y, uint8_t* z,
uint8_t* workspace, uint8_t* tiling)
{
AddCustom<<<blockDim, l2ctrl, stream>>>(x, y, z, workspace, tiling);
}
#endif
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。