This repository provides the latest deep learning example networks for training. These examples focus on achieving the best performance and convergence from NVIDIA Volta Tensor Cores.
These examples, along with our NVIDIA deep learning software stack, are provided in a monthly updated Docker container on the NGC container registry (https://ngc.nvidia.com). These containers include:
The examples are organized first by framework, such as TensorFlow, PyTorch, etc. and second by use case, such as computer vision, natural language processing, etc. We hope this structure enables you to quickly locate the example networks that best suit your needs. Here are the currently supported models:
Models | TensorFlow | PyTorch | TensorRT | Triton |
---|---|---|---|---|
SSD | Inference | Inference | - | - |
MaskRCNN | - | Training & Inference | - | - |
Jasper | - | - | PyTorch Inference TensorRT Colab, PyTorch Inference TensorRT | PyTorch Inference TRTIS |
Tacotron2 & WaveGlow | - | Training & Inference | - | PyTorch Inference TRTIS |
BERT | Inference Movie Review Sentiment, Fine-Tuning SQuaD, Inference Colab, Inference | - | - | - |
BioBERT | Inference | - | - | - |
UNet Industrial | Export and Inference Colab, Inference | - | - | - |
Automatic Mixed Precision | AMP Training | - | - | - |
Models | Framework | DALI | AMP | Multi-GPU | Multi-Node | TensorRT | ONNX | Triton | TF-TRT |
---|---|---|---|---|---|---|---|---|---|
ResNet50 v1.5 | PyTorch | Yes | Yes | Yes | - | - | - | - | - |
ResNeXt101-32x4d | PyTorch | Yes | Yes | Yes | - | - | - | - | - |
SE-ResNeXt101-32x4d | PyTorch | Yes | Yes | Yes | - | - | - | - | - |
SSD300 v1.1 | PyTorch | Yes | Yes | Yes | - | - | - | - | - |
BERT | PyTorch | N/A | Yes | Yes | Yes | - | - | Yes | - |
Transformer-XL | PyTorch | N/A | Yes | Yes | Yes | - | - | - | - |
Neural Collaborative Filtering | PyTorch | N/A | Yes | Yes | - | - | - | - | - |
DLRM | PyTorch | N/A | Yes | Yes | - | - | - | - | - |
Mask R-CNN | PyTorch | N/A | Yes | Yes | - | - | - | - | - |
Jasper | PyTorch | N/A | Yes | Yes | - | Yes | Yes | Yes | - |
Tacotron 2 And WaveGlow v1.10 | PyTorch | N/A | Yes | Yes | - | Yes | Yes | Yes | - |
GNMT v2 | PyTorch | N/A | Yes | Yes | - | - | - | - | - |
Transformer | PyTorch | N/A | Yes | Yes | - | - | - | - | - |
ResNet-50 v1.5 | TensorFlow | Yes | Yes | Yes | - | - | - | - | - |
SSD320 v1.2 | TensorFlow | N/A | Yes | Yes | - | - | - | - | - |
BERT | TensorFlow | N/A | Yes | Yes | Yes | Yes | - | Yes | Yes |
BioBert | TensorFlow | N/A | Yes | Yes | - | - | - | - | - |
Transformer-XL | TensorFlow | N/A | Yes | Yes | - | - | - | - | - |
Neural Collaborative Filtering | TensorFlow | N/A | Yes | Yes | - | - | - | - | - |
Variational Autoencoder Collaborative Filtering | TensorFlow | N/A | Yes | Yes | - | - | - | - | - |
WideAndDeep | TensorFlow | N/A | Yes | Yes | - | - | - | - | - |
U-Net Industrial | TensorFlow | N/A | Yes | Yes | - | Yes | - | - | Yes |
U-Net Medical | TensorFlow | N/A | Yes | Yes | - | Yes | - | - | Yes |
V-Net Medical | TensorFlow | N/A | Yes | Yes | - | Yes | Yes | - | Yes |
Mask R-CNN | TensorFlow | N/A | Yes | Yes | - | - | - | - | - |
GNMT v2 | TensorFlow | N/A | Yes | Yes | - | - | - | - | - |
Faster Transformer | Tensorflow | N/A | - | - | - | Yes | - | - | - |
Transformer-XL | TensorFlow | N/A | Yes | Yes | - | - | - | - | - |
U-Net Medical | TensorFlow-2 | N/A | Yes | Yes | - | Yes | - | - | Yes |
Mask R-CNN | TensorFlow-2 | N/A | Yes | Yes | - | - | - | - | - |
ResNet50 v1.5 | MXNet | Yes | Yes | Yes | - | - | - | - | - |
HMM | Kaldi | N/A | - | Yes | - | - | - | Yes | - |
In each of the network READMEs, we indicate the level of support that will be provided. The range is from ongoing updates and improvements to a point-in-time release for thought leadership.
We're posting these examples on GitHub to better support the community, facilitate feedback, as well as collect and implement contributions using GitHub Issues and pull requests. We welcome all contributions!
In each of the network READMEs, we indicate any known issues and encourage the community to provide feedback.
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。