This is a work in progress and the aim is to have a workable version by end of year. Watch this space
This is a Python implementation of the Machine Vision Toolbox for MATLAB®, which is a standalone component of the Robotics Toolbox for MATLAB®.
Spatial mathematics capability underpins all of robotics and robotic vision where we need to describe the position, orientation or pose of objects in 2D or 3D spaces.
numpy
, scipy
, matplotlib
, ffmpeg
(if rendering animations as a movie), spatialmath-python
.Machine Vision Toolbox for MATLAB® release 4.
The Machine Vision Toolbox (MVTB) provides many functions that are useful in machine vision and vision-based control. It is a somewhat eclectic collection reflecting my personal interest in areas of photometry, photogrammetry, colorimetry. It includes over 100 functions spanning operations such as image file reading and writing, acquisition, display, filtering, blob, point and line feature extraction, mathematical morphology, homographies, visual Jacobians, camera calibration and color space conversion. With input from a web camera and output to a robot (not provided) it would be possible to implement a visual servo system entirely in MATLAB.
An image is usually treated as a rectangular array of scalar values representing intensity or perhaps range. The matrix is the natural datatype for MATLAB and thus makes the manipulation of images easily expressible in terms of arithmetic statements in MATLAB language. Many image operations such as thresholding, filtering and statistics can be achieved with existing MATLAB functions.
Advantages of the Toolbox are that:
Install a snapshot from PyPI
% pip install machinevision-toolbox-python
Install the current code base from GitHub and pip install a link to that cloned copy
% git clone https://github.com/petercorke/machinevision-toolbox-python.git
% cd machinevision-toolbox-python
% pip install -e .
>> im = iread('shark2.png'); % read a binary image of two sharks
>> idisp(im); % display it with interactive viewing tool
>> f = iblobs(im, 'class', 1) % find all the white blobs
f =
(1) area=7827, cent=(172.3,156.1), theta=-0.21, b/a=0.585, color=1, label=2, touch=0, parent=1
(2) area=7827, cent=(372.3,356.1), theta=-0.21, b/a=0.585, color=1, label=3, touch=0, parent=1
>> f.plot_box('g') % put a green bounding box on each blob
>> f.plot_centroid('o'); % put a circle+cross on the centroid of each blob
>> f.plot_centroid('x');
We can load a binary image with nested objects
>> im = iread('multiblobs.png');
>> idisp(im)
and request the blob label image which we then display
>> [label, m] = ilabel(im);
>> idisp(label, 'colormap', jet, 'bar')
>> cam = CentralCamera('focal', 0.015, 'pixel', 10e-6, ...
'resolution', [1280 1024], 'centre', [640 512], 'name', 'mycamera')
cam =
name: mycamera [central-perspective]
focal length: 0.015
pixel size: (1e-05, 1e-05)
principal pt: (640, 512)
number pixels: 1280 x 1024
pose: t = (0, 0, 0), RPY/yxz = (0, 0, 0) deg
and its intrinsic parameters are
>> cam.K
ans =
1.0e+03 *
1.5000 0 0.6400
0 1.5000 0.5120
0 0 0.0010
We can define an arbitrary point in the world
>> P = [0.3, 0.4, 3.0]';
and then project it into the camera
>> cam.project(P)
ans =
790
712
which is the corresponding coordinate in pixels. If we shift the camera slightly the image plane coordiante will also change
>> cam.project(P, 'pose', SE3(0.1, 0, 0) )
ans =
740
712
We can define an edge-based cube model and project it into the camera's image plane
>> [X,Y,Z] = mkcube(0.2, 'pose', SE3(0, 0, 1), 'edge');
>> cam.mesh(X, Y, Z);
or with a fisheye camera
>> cam = FishEyeCamera('name', 'fisheye', ...
'projection', 'equiangular', ...
'pixel', 10e-6, ...
'resolution', [1280 1024]);
>> [X,Y,Z] = mkcube(0.2, 'centre', [0.2, 0, 0.3], 'edge');
>> cam.mesh(X, Y, Z);
Plot the CIE chromaticity space
showcolorspace('xy')
lambda = [460:10:540 560:20:600];
[x,y]=lambda2xy(lambda*1e-9);
hold on
plot_point([x y]', 'printf', {' %d', lambda}, 'ko', 'MarkerFaceColor', 'k', 'MarkerSize', 6)
Load the spectrum of sunlight at the Earth's surface and compute the CIE xy chromaticity coordinates
lambda = [400:5:700] * 1e-9; % visible light
sun_at_ground = loadspectrum(lambda, 'solar');
>> lambda2xy(lambda, sun_at_ground)
ans =
0.3327 0.3454
>> colorname(ans, 'xy')
loading rgb.txt
ans =
'antiquewhite4'
im = iread('church.png', 'grey', 'double');
edges = icanny(im);
h = Hough(edges, 'suppress', 10);
lines = h.lines();
idisp(im, 'dark');
lines(1:10).plot('g');
lines = lines.seglength(edges);
lines(1)
k = find( lines.length > 80);
lines(k).plot('b--')
We load two images and compute a set of SURF features for each
>> im1 = iread('eiffel2-1.jpg', 'mono', 'double');
>> im2 = iread('eiffel2-2.jpg', 'mono', 'double');
>> sf1 = isurf(im1);
>> sf2 = isurf(im2);
We can match features between images based purely on the similarity of the features, and display the correspondences found
>> m = sf1.match(sf2)
m =
644 corresponding points (listing suppressed)
>> m(1:5)
ans =
(819.56, 358.557) <-> (708.008, 563.342), dist=0.002137
(1028.3, 231.748) <-> (880.14, 461.094), dist=0.004057
(1027.6, 571.118) <-> (885.147, 742.088), dist=0.004297
(927.724, 509.93) <-> (800.833, 692.564), dist=0.004371
(854.35, 401.633) <-> (737.504, 602.187), dist=0.004417
>> idisp({im1, im2})
>> m.subset(100).plot('w')
Clearly there are some bad matches here, but we we can use RANSAC and the epipolar constraint implied by the fundamental matrix to estimate the fundamental matrix and classify correspondences as inliers or outliers
>> F = m.ransac(@fmatrix, 1e-4, 'verbose')
617 trials
295 outliers
0.000145171 final residual
F =
0.0000 -0.0000 0.0087
0.0000 0.0000 -0.0135
-0.0106 0.0116 3.3601
>> m.inlier.subset(100).plot('g')
>> hold on
>> m.outlier.subset(100).plot('r')
>> hold off
where green lines show correct correspondences (inliers) and red lines show bad correspondences (outliers)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。