1 Star 1 Fork 2

Hugging Face 模型镜像/t5-small

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
languagelicensetagsdatasets
enfrrodemultilingual
apache-2.0
summarizationtranslation
c4

Model Card for T5 Small

model image

Table of Contents

  1. Model Details
  2. Uses
  3. Bias, Risks, and Limitations
  4. Training Details
  5. Evaluation
  6. Environmental Impact
  7. Citation
  8. Model Card Authors
  9. How To Get Started With the Model

Model Details

Model Description

The developers of the Text-To-Text Transfer Transformer (T5) write:

With T5, we propose reframing all NLP tasks into a unified text-to-text-format where the input and output are always text strings, in contrast to BERT-style models that can only output either a class label or a span of the input. Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task.

T5-Small is the checkpoint with 60 million parameters.

Uses

Direct Use and Downstream Use

The developers write in a blog post that the model:

Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task, including machine translation, document summarization, question answering, and classification tasks (e.g., sentiment analysis). We can even apply T5 to regression tasks by training it to predict the string representation of a number instead of the number itself.

See the blog post and research paper for further details.

Out-of-Scope Use

More information needed.

Bias, Risks, and Limitations

More information needed.

Recommendations

More information needed.

Training Details

Training Data

The model is pre-trained on the Colossal Clean Crawled Corpus (C4), which was developed and released in the context of the same research paper as T5.

The model was pre-trained on a on a multi-task mixture of unsupervised (1.) and supervised tasks (2.). Thereby, the following datasets were being used for (1.) and (2.):

  1. Datasets used for Unsupervised denoising objective:
  1. Datasets used for Supervised text-to-text language modeling objective

Training Procedure

In their abstract, the model developers write:

In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks.

The framework introduced, the T5 framework, involves a training procedure that brings together the approaches studied in the paper. See the research paper for further details.

Evaluation

Testing Data, Factors & Metrics

The developers evaluated the model on 24 tasks, see the research paper for full details.

Results

For full results for T5-small, see the research paper, Table 14.

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: Google Cloud TPU Pods
  • Hours used: More information needed
  • Cloud Provider: GCP
  • Compute Region: More information needed
  • Carbon Emitted: More information needed

Citation

BibTeX:

@article{2020t5,
  author  = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
  title   = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {140},
  pages   = {1-67},
  url     = {http://jmlr.org/papers/v21/20-074.html}
}

APA:

  • Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140), 1-67.

Model Card Authors

This model card was written by the team at Hugging Face.

How to Get Started with the Model

Use the code below to get started with the model.

Click to expand
from transformers import T5Tokenizer, T5Model

tokenizer = T5Tokenizer.from_pretrained("t5-small")
model = T5Model.from_pretrained("t5-small")

input_ids = tokenizer(
    "Studies have been shown that owning a dog is good for you", return_tensors="pt"
).input_ids  # Batch size 1
decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids  # Batch size 1

# forward pass
outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
last_hidden_states = outputs.last_hidden_state

See the Hugging Face T5 docs and a Colab Notebook created by the model developers for more examples.

空文件

简介

T5-Small 是一个较小规模的文本到文本预训练模型,由Google提出,采用了Transformer架构。尽管规模较小,但该模型在各种自然语言处理任务上表现优异,包括文本生成、问答系统和文本摘要等。T5-Small 可用于快速原型开发和资源受限环境下的文本处理任务。 展开 收起
取消

发行版

暂无发行版

贡献者

全部

近期动态

不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/hf-models/t5-small.git
git@gitee.com:hf-models/t5-small.git
hf-models
t5-small
t5-small
main

搜索帮助