代码拉取完成,页面将自动刷新
/*
* Copyright (c) 2023-2025 HPMicro
* SPDX-License-Identifier: BSD-3-Clause
*
*
*/
#include "board.h"
#include "hpm_uart_drv.h"
#include "hpm_gptmr_drv.h"
#include "hpm_i2c_drv.h"
#include "hpm_gpio_drv.h"
#include "pinmux.h"
#include "hpm_pmp_drv.h"
#include "hpm_clock_drv.h"
/* #include "hpm_sysctl_drv.h" */
#include "hpm_pllctlv2_drv.h"
#include "hpm_enet_drv.h"
#include "hpm_usb_drv.h"
#include "hpm_pcfg_drv.h"
/**
* @brief FLASH configuration option definitions:
* option[0]:
* [31:16] 0xfcf9 - FLASH configuration option tag
* [15:4] 0 - Reserved
* [3:0] option words (exclude option[0])
* option[1]:
* [31:28] Flash probe type
* 0 - SFDP SDR / 1 - SFDP DDR
* 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
* 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
* 6 - OctaBus DDR (SPI -> OPI DDR)
* 8 - Xccela DDR (SPI -> OPI DDR)
* 10 - EcoXiP DDR (SPI -> OPI DDR)
* [27:24] Command Pads after Power-on Reset
* 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
* [23:20] Command Pads after Configuring FLASH
* 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
* [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
* 0 - Not needed
* 1 - QE bit is at bit 6 in Status Register 1
* 2 - QE bit is at bit1 in Status Register 2
* 3 - QE bit is at bit7 in Status Register 2
* 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
* [15:8] Dummy cycles
* 0 - Auto-probed / detected / default value
* Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
* [7:4] Misc.
* 0 - Not used
* 1 - SPI mode
* 2 - Internal loopback
* 3 - External DQS
* [3:0] Frequency option
* 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 111MHz / 7 - 133MHz / 8 - 166MHz
*
* option[2] (Effective only if the bit[3:0] in option[0] > 1)
* [31:20] Reserved
* [19:16] IO voltage
* 0 - 3V / 1 - 1.8V
* [15:12] Pin group
* 0 - 1st group / 1 - 2nd group
* [11:8] Connection selection
* 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
* [7:0] Drive Strength
* 0 - Default value
* option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
* JESD216)
* [31:16] reserved
* [15:12] Sector Erase Command Option, not required here
* [11:8] Sector Size Option, not required here
* [7:0] Flash Size Option
* 0 - 4MB / 1 - 8MB / 2 - 16MB
*/
#if defined(FLASH_XIP) && FLASH_XIP
__attribute__((section(".nor_cfg_option"), used)) const uint32_t option[4] = { 0xfcf90002, 0x00000005, 0x1000, 0x0 };
#endif
#if defined(FLASH_UF2) && FLASH_UF2
ATTR_PLACE_AT(".uf2_signature") __attribute__((used)) const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
#endif
void board_init_console(void)
{
#if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
#if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
console_config_t cfg;
/* uart needs to configure pin function before enabling clock, otherwise the level change of
* uart rx pin when configuring pin function will cause a wrong data to be received.
* And a uart rx dma request will be generated by default uart fifo dma trigger level.
*/
init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE);
clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0);
cfg.type = BOARD_CONSOLE_TYPE;
cfg.base = (uint32_t) BOARD_CONSOLE_UART_BASE;
cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME);
cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE;
if (status_success != console_init(&cfg)) {
/* failed to initialize debug console */
while (1) {
}
}
#else
while (1)
;
#endif
#endif
}
void board_print_clock_freq(void)
{
printf("==============================\n");
printf(" %s clock summary\n", BOARD_NAME);
printf("==============================\n");
printf("cpu0:\t\t %dHz\n", clock_get_frequency(clock_cpu0));
printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb0));
printf("axif:\t\t %dHz\n", clock_get_frequency(clock_axif));
printf("axis:\t\t %dHz\n", clock_get_frequency(clock_axis));
printf("axic:\t\t %dHz\n", clock_get_frequency(clock_axic));
printf("xpi0:\t\t %dHz\n", clock_get_frequency(clock_xpi0));
printf("mchtmr0:\t %dHz\n", clock_get_frequency(clock_mchtmr0));
printf("==============================\n");
}
void board_init_uart(UART_Type *ptr)
{
/* configure uart's pin before opening uart's clock */
init_uart_pins(ptr);
board_init_uart_clock(ptr);
}
void board_print_banner(void)
{
const uint8_t banner[] = { "\n\
----------------------------------------------------------------------\n\
$$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
$$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
$$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
$$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
$$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
$$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
$$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
\\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
----------------------------------------------------------------------\n" };
#ifdef SDK_VERSION_STRING
printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
#endif
printf("%s", banner);
}
uint8_t board_get_led_gpio_off_level(void)
{
return BOARD_LED_OFF_LEVEL;
}
void board_ungate_mchtmr_at_lp_mode(void)
{
/* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
}
void board_init(void)
{
board_init_clock();
board_init_console();
board_init_pmp();
#if BOARD_SHOW_CLOCK
board_print_clock_freq();
#endif
#if BOARD_SHOW_BANNER
board_print_banner();
#endif
}
void board_delay_us(uint32_t us)
{
clock_cpu_delay_us(us);
}
void board_delay_ms(uint32_t ms)
{
clock_cpu_delay_ms(ms);
}
#if !defined(NO_BOARD_TIMER_SUPPORT) || !NO_BOARD_TIMER_SUPPORT
static board_timer_cb timer_cb;
SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
void board_timer_isr(void)
{
if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
timer_cb();
}
}
void board_timer_create(uint32_t ms, board_timer_cb cb)
{
uint32_t gptmr_freq;
gptmr_channel_config_t config;
timer_cb = cb;
gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
config.reload = gptmr_freq / 1000 * ms;
gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
}
#endif
void board_i2c_bus_clear(I2C_Type *ptr)
{
if (i2c_get_line_scl_status(ptr) == false) {
printf("CLK is low, please power cycle the board\n");
while (1) {
}
}
if (i2c_get_line_sda_status(ptr) == false) {
printf("SDA is low, try to issue I2C bus clear\n");
} else {
printf("I2C bus is ready\n");
return;
}
i2c_gen_reset_signal(ptr, 9);
board_delay_ms(100);
printf("I2C bus is cleared\n");
}
uint32_t board_init_i2c_clock(I2C_Type *ptr)
{
uint32_t freq = 0;
if (ptr == HPM_I2C0) {
clock_add_to_group(clock_i2c0, 0);
freq = clock_get_frequency(clock_i2c0);
} else if (ptr == HPM_I2C1) {
clock_add_to_group(clock_i2c1, 0);
freq = clock_get_frequency(clock_i2c1);
} else if (ptr == HPM_I2C2) {
clock_add_to_group(clock_i2c2, 0);
freq = clock_get_frequency(clock_i2c2);
} else if (ptr == HPM_I2C3) {
clock_add_to_group(clock_i2c3, 0);
freq = clock_get_frequency(clock_i2c3);
} else {
;
}
return freq;
}
void board_init_i2c(I2C_Type *ptr)
{
i2c_config_t config;
hpm_stat_t stat;
uint32_t freq;
freq = board_init_i2c_clock(ptr);
init_i2c_pins(ptr);
board_i2c_bus_clear(ptr);
config.i2c_mode = i2c_mode_normal;
config.is_10bit_addressing = false;
stat = i2c_init_master(ptr, freq, &config);
if (stat != status_success) {
printf("failed to initialize i2c 0x%lx\n", (uint32_t) ptr);
while (1) {
}
}
}
uint32_t board_init_spi_clock(SPI_Type *ptr)
{
if (ptr == HPM_SPI1) {
clock_add_to_group(clock_spi1, 0);
return clock_get_frequency(clock_spi1);
} else if (ptr == HPM_SPI3) {
clock_add_to_group(clock_spi3, 0);
return clock_get_frequency(clock_spi3);
} else {
;
}
return 0;
}
void board_init_gpio_pins(void)
{
init_gpio_pins();
/* Key A*/
gpio_set_pin_input(BOARD_APP_GPIO_CTRL, BOARD_APP_GPIO_INDEX, BOARD_APP_GPIO_PIN);
}
void board_init_spi_pins(SPI_Type *ptr)
{
init_spi_pins(ptr);
}
void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
{
init_spi_pins_with_gpio_as_cs(ptr);
gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
}
void board_write_spi_cs(uint32_t pin, uint8_t state)
{
gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
}
void board_init_led_pins(void)
{
init_led_pins();
gpio_set_pin_output_with_initial(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, board_get_led_gpio_off_level());
}
void board_led_toggle(void)
{
gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
}
void board_led_write(uint8_t state)
{
gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
}
void board_init_pmp(void)
{
}
void board_init_clock(void)
{
uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
/* Configure the External OSC ramp-up time: ~9ms */
pllctlv2_xtal_set_rampup_time(HPM_PLLCTLV2, 32ul * 1000ul * 9u);
/* select clock setting preset1 */
sysctl_clock_set_preset(HPM_SYSCTL, 2);
}
/* Add Clocks to group 0 */
clock_add_to_group(clock_cpu0, 0);
clock_add_to_group(clock_mchtmr0, 0);
clock_add_to_group(clock_ahb0, 0);
clock_add_to_group(clock_axif, 0);
clock_add_to_group(clock_axis, 0);
clock_add_to_group(clock_axic, 0);
clock_add_to_group(clock_rom0, 0);
clock_add_to_group(clock_xpi0, 0);
clock_add_to_group(clock_lmm0, 0);
clock_add_to_group(clock_ram0, 0);
clock_add_to_group(clock_hdma, 0);
clock_add_to_group(clock_xdma, 0);
clock_add_to_group(clock_gpio, 0);
clock_add_to_group(clock_ptpc, 0);
/* Motor Related */
clock_add_to_group(clock_qei0, 0);
clock_add_to_group(clock_plb0, 0);
clock_add_to_group(clock_qei1, 0);
clock_add_to_group(clock_qeo0, 0);
clock_add_to_group(clock_qeo1, 0);
clock_add_to_group(clock_pwm0, 0);
clock_add_to_group(clock_pwm1, 0);
clock_add_to_group(clock_emds, 0);
/* Connect Group0 to CPU0 */
clock_connect_group_to_cpu(0, 0);
/* Bump up DCDC voltage to 1275mv */
pcfg_dcdc_set_voltage(HPM_PCFG, 1275);
/* Configure PLL0 Post Divider */
pllctlv2_set_postdiv(HPM_PLLCTLV2, pllctlv2_pll0, pllctlv2_clk0, pllctlv2_div_1p0); /* PLL0CLK0: 480MHz */
pllctlv2_set_postdiv(HPM_PLLCTLV2, pllctlv2_pll0, pllctlv2_clk1, pllctlv2_div_1p2); /* PLL0CLK1: 400MHz */
/* Configure PLL0 Frequency to 480MHz */
pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, pllctlv2_pll0, BOARD_CPU_FREQ);
/* CPU clock use clk_src_pll0_clk0 */
clock_set_source_divider(clock_cpu0, clk_src_pll0_clk0, 1);
clock_update_core_clock();
/* Configure mchtmr to 24MHz */
clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
}
uint32_t board_init_uart_clock(UART_Type *ptr)
{
uint32_t freq = 0U;
if (ptr == HPM_UART0) {
clock_add_to_group(clock_uart0, 0);
freq = clock_get_frequency(clock_uart0);
} else if (ptr == HPM_UART4) {
clock_add_to_group(clock_uart4, 0);
freq = clock_get_frequency(clock_uart4);
} else {
/* Not supported */
}
return freq;
}
void board_init_usb(USB_Type *ptr)
{
if (ptr == HPM_USB0) {
init_usb_pins(ptr);
clock_add_to_group(clock_usb0, 0);
usb_hcd_set_power_ctrl_polarity(ptr, true);
/* Wait USB_PWR pin control vbus power stable. Time depend on decoupling capacitor, you can decrease or increase this time */
board_delay_ms(100);
/* As LQFP100 has no vbus pin, so should be call usb_phy_using_internal_vbus() API to use internal vbus. */
/* usb_phy_using_internal_vbus(ptr); */
}
}
void board_init_adc16_pins(void)
{
init_adc16_pins();
}
uint32_t board_init_adc_clock(void *ptr, bool clk_src_bus) /* motor system should be use clk_adc_src_ahb0 */
{
uint32_t freq = 0;
if (ptr == (void *)HPM_ADC0) {
clock_add_to_group(clock_adc0, 0);
if (clk_src_bus) {
/* Configure the ADC clock from AHB (@200MHz by default)*/
clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
} else {
/* Configure the ADC clock from ANA (@200MHz by default)*/
clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
}
freq = clock_get_frequency(clock_adc0);
} else if (ptr == (void *)HPM_ADC1) {
clock_add_to_group(clock_adc1, 0);
if (clk_src_bus) {
/* Configure the ADC clock from AHB (@200MHz by default)*/
clock_set_adc_source(clock_adc1, clk_adc_src_ahb0);
} else {
/* Configure the ADC clock from ANA (@200MHz by default)*/
clock_set_adc_source(clock_adc1, clk_adc_src_ana1);
}
freq = clock_get_frequency(clock_adc1);
} else {
;
}
return freq;
}
void board_init_acmp_pins(void)
{
init_acmp_pins();
}
void board_init_acmp_clock(ACMP_Type *ptr)
{
(void)ptr;
clock_add_to_group(BOARD_ACMP_CLK, BOARD_RUNNING_CORE & 0x1);
}
void board_init_can(MCAN_Type *ptr)
{
init_can_pins(ptr);
}
uint32_t board_init_can_clock(MCAN_Type *ptr)
{
uint32_t freq = 0;
if (ptr == HPM_MCAN0) {
/* Set the CAN0 peripheral clock to 80MHz */
clock_add_to_group(clock_can0, 0);
clock_set_source_divider(clock_can0, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can0);
} else if (ptr == HPM_MCAN1) {
/* Set the CAN1 peripheral clock to 80MHz */
clock_add_to_group(clock_can1, 0);
clock_set_source_divider(clock_can1, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can1);
} else if (ptr == HPM_MCAN2) {
/* Set the CAN2 peripheral clock to 80MHz */
clock_add_to_group(clock_can2, 0);
clock_set_source_divider(clock_can2, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can2);
} else if (ptr == HPM_MCAN3) {
/* Set the CAN3 peripheral clock to 80MHz */
clock_add_to_group(clock_can3, 0);
clock_set_source_divider(clock_can3, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can3);
} else {
/* Invalid CAN instance */
}
return freq;
}
hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
{
/* set clock source */
if (ptr == HPM_ENET0) {
clock_add_to_group(clock_ptp0, 0);
/* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet0 ptp function */
/* clock_set_source_divider(clock_ptp0, clk_src_pll1_clk1, 4); */ /* 100MHz */
} else {
return status_invalid_argument;
}
return status_success;
}
hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
{
init_enet_pins(ptr);
if (ptr == HPM_ENET0) {
gpio_set_pin_output_with_initial(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
} else {
return status_invalid_argument;
}
return status_success;
}
hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
{
if (ptr == HPM_ENET0) {
gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
board_delay_ms(1);
gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 1);
} else {
return status_invalid_argument;
}
return status_success;
}
uint8_t board_get_enet_dma_pbl(ENET_Type *ptr)
{
(void) ptr;
return enet_pbl_32;
}
hpm_stat_t board_enable_enet_irq(ENET_Type *ptr)
{
if (ptr == HPM_ENET0) {
intc_m_enable_irq(IRQn_ENET0);
} else {
return status_invalid_argument;
}
return status_success;
}
hpm_stat_t board_disable_enet_irq(ENET_Type *ptr)
{
if (ptr == HPM_ENET0) {
intc_m_disable_irq(IRQn_ENET0);
} else {
return status_invalid_argument;
}
return status_success;
}
void board_init_enet_pps_pins(ENET_Type *ptr)
{
(void) ptr;
init_enet_pps_pins();
}
hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
{
/* Configure Enet clock to output reference clock */
if (ptr == HPM_ENET0) {
clock_add_to_group(clock_eth0, 0);
if (internal) {
/* set pll output frequency at 1GHz */
if (pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, pllctlv2_pll2, 1000000000UL) == status_success) {
/* set pll2_clk1 output frequency at 250MHz from PLL2 divided by 4 (1 + 15 / 5) */
pllctlv2_set_postdiv(HPM_PLLCTLV2, pllctlv2_pll2, pllctlv2_clk1, pllctlv2_div_4p0);
/* set eth clock frequency at 50MHz for enet0 */
/* clock_set_source_divider(clock_eth0, clk_src_pll2_clk1, 5); */
} else {
return status_fail;
}
}
} else {
return status_invalid_argument;
}
enet_rmii_enable_clock(ptr, internal); /* defined in hpm_enet_soc_drv.h, not sure */
return status_success;
}
hpm_stat_t board_init_enet_rgmii_clock_delay(ENET_Type *ptr)
{
if (ptr == HPM_ENET0) {
clock_add_to_group(clock_eth0, BOARD_RUNNING_CORE & 0x1);
return enet_rgmii_set_clock_delay(ptr, BOARD_ENET_RGMII_TX_DLY, BOARD_ENET_RGMII_RX_DLY); /* defined in hpm_enet_soc_drv.h, not sure */
}
return status_invalid_argument;
}
void board_init_owr_pins(OWR_Type *ptr)
{
init_owr_pins(ptr);
}
void board_init_ethercat(ESC_Type *ptr)
{
(void)ptr;
clock_add_to_group(clock_esc0, 0);
init_esc_pins();
/* PHY reset pin */
gpio_set_pin_output_with_initial(HPM_GPIO0, BOARD_ECAT_PHY0_RESET_GPIO_PORT_INDEX, BOARD_ECAT_PHY0_RESET_PIN_INDEX, 0);
#if BOARD_ECAT_SUPPORT_PORT1
gpio_set_pin_output_with_initial(HPM_GPIO0, BOARD_ECAT_PHY1_RESET_GPIO_PORT_INDEX, BOARD_ECAT_PHY1_RESET_PIN_INDEX, 0);
#endif
#if BOARD_ECAT_SUPPORT_PORT2
gpio_set_pin_output_with_initial(HPM_GPIO0, BOARD_ECAT_PHY2_RESET_GPIO_PORT_INDEX, BOARD_ECAT_PHY2_RESET_PIN_INDEX, 0);
#endif
}
/* switch and led pin for ethercat io test */
void board_init_switch_led(void)
{
init_esc_in_out_pin();
gpio_set_pin_input(BOARD_ECAT_IN1_GPIO, BOARD_ECAT_IN1_GPIO_PORT_INDEX, BOARD_ECAT_IN1_GPIO_PIN_INDEX);
gpio_set_pin_input(BOARD_ECAT_IN2_GPIO, BOARD_ECAT_IN2_GPIO_PORT_INDEX, BOARD_ECAT_IN2_GPIO_PIN_INDEX);
gpio_set_pin_output_with_initial(BOARD_ECAT_OUT1_GPIO, BOARD_ECAT_OUT1_GPIO_PORT_INDEX, BOARD_ECAT_OUT1_GPIO_PIN_INDEX, 0);
gpio_set_pin_output_with_initial(BOARD_ECAT_OUT2_GPIO, BOARD_ECAT_OUT2_GPIO_PORT_INDEX, BOARD_ECAT_OUT2_GPIO_PIN_INDEX, 0);
}
void board_init_adc_qeiv2_pins(void)
{
init_adc_qeiv2_pins();
}
void board_init_gptmr_channel_pin(GPTMR_Type *ptr, uint32_t channel, bool as_comp)
{
init_gptmr_channel_pin(ptr, channel, as_comp);
}
void board_init_owr_clock(OWR_Type *ptr)
{
(void) ptr;
clock_add_to_group(BOARD_OWR_CLK_NAME, 0);
}
void board_init_clk_ref_pin(void)
{
init_clk_ref_pins();
}
uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
{
uint32_t freq = 0U;
if (ptr == HPM_GPTMR0) {
clock_add_to_group(clock_gptmr0, BOARD_RUNNING_CORE & 0x1);
freq = clock_get_frequency(clock_gptmr0);
} else if (ptr == HPM_GPTMR1) {
clock_add_to_group(clock_gptmr1, BOARD_RUNNING_CORE & 0x1);
freq = clock_get_frequency(clock_gptmr1);
} else if (ptr == HPM_GPTMR2) {
clock_add_to_group(clock_gptmr2, BOARD_RUNNING_CORE & 0x1);
freq = clock_get_frequency(clock_gptmr2);
} else if (ptr == HPM_GPTMR3) {
clock_add_to_group(clock_gptmr3, BOARD_RUNNING_CORE & 0x1);
freq = clock_get_frequency(clock_gptmr3);
} else if (ptr == HPM_PTMR) {
clock_add_to_group(clock_ptmr, BOARD_RUNNING_CORE & 0x1);
freq = clock_get_frequency(clock_ptmr);
} else {
/* Not supported */
}
return freq;
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。