0 Star 0 Fork 0

LinkStart / DesignPattern

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README

一、设计模式的分类

总体来说设计模式分为三大类:

创建型模式,共五种:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。

结构型模式,共七种:适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。

行为型模式,共十一种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。

其实还有两类:并发型模式和线程池模式。

二、设计模式的六大原则

1、开闭原则(Open Close Principle)

开闭原则就是说对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。所以一句话概括就是:为了使程序的扩展性好,易于维护和升级。想要达到这样的效果,我们需要使用接口和抽象类,后面的具体设计中我们会提到这点。

2、里氏代换原则(Liskov Substitution Principle)

里氏代换原则(Liskov Substitution Principle LSP)面向对象设计的基本原则之一。 里氏代换原则中说,任何基类可以出现的地方,子类一定可以出现。 LSP是继承复用的基石,只有当衍生类可以替换掉基类,软件单位的功能不受到影响时,基类才能真正被复用,而衍生类也能够在基类的基础上增加新的行为。里氏代换原则是对“开-闭”原则的补充。实现“开-闭”原则的关键步骤就是抽象化。而基类与子类的继承关系就是抽象化的具体实现,所以里氏代换原则是对实现抽象化的具体步骤的规范。—— From Baidu 百科

3、依赖倒转原则(Dependence Inversion Principle)

这个是开闭原则的基础,具体内容:真对接口编程,依赖于抽象而不依赖于具体。

4、接口隔离原则(Interface Segregation Principle)

这个原则的意思是:使用多个隔离的接口,比使用单个接口要好。还是一个降低类之间的耦合度的意思,从这儿我们看出,其实设计模式就是一个软件的设计思想,从大型软件架构出发,为了升级和维护方便。所以上文中多次出现:降低依赖,降低耦合。

5、迪米特法则(最少知道原则)(Demeter Principle)

为什么叫最少知道原则,就是说:一个实体应当尽量少的与其他实体之间发生相互作用,使得系统功能模块相对独立。

6、合成复用原则(Composite Reuse Principle)

原则是尽量使用合成/聚合的方式,而不是使用继承。

三、Java的23种设计模式

从这一块开始,我们详细介绍Java中23种设计模式的概念,应用场景等情况,并结合他们的特点及设计模式的原则进行分析。

####1、工厂方法模式(Factory Method)

工厂方法模式分为三种:

11、普通工厂模式,就是建立一个工厂类,对实现了同一接口的一些类进行实例的创建。 avatar

举例如下:(我们举一个发送邮件和短信的例子)

首先,创建二者的共同接口:

public interface Sender { public void Send(); } 其次,创建实现类:

public class MailSender implements Sender {
	@Override
	public void Send() {
		System.out.println("this is mailsender!");
	}
}
public class SmsSender implements Sender {
 
	@Override
	public void Send() {
		System.out.println("this is sms sender!");
	}
}

最后,建工厂类:

public class SendFactory {
 
	public Sender produce(String type) {
		if ("mail".equals(type)) {
			return new MailSender();
		} else if ("sms".equals(type)) {
			return new SmsSender();
		} else {
			System.out.println("请输入正确的类型!");
			return null;
		}
	}
}

我们来测试下:

public class FactoryTest {
 
	public static void main(String[] args) {
		SendFactory factory = new SendFactory();
		Sender sender = factory.produce("sms");
		sender.Send();
	}
}

输出:this is sms sender!

22、多个工厂方法模式,是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式是提供多个工厂方法,分别创建对象。关系图:

avatar

将上面的代码做下修改,改动下SendFactory类就行,如下:

public class SendFactory {
	
	public Sender produceMail(){
		return new MailSender();
	}
	
	public Sender produceSms(){
		return new SmsSender();
	}
}

测试类如下:

public class FactoryTest {
 
	public static void main(String[] args) {
		SendFactory factory = new SendFactory();
		Sender sender = factory.produceMail();
		sender.Send();
	}
}

33、静态工厂方法模式,将上面的多个工厂方法模式里的方法置为静态的,不需要创建实例,直接调用即可。


public class SendFactory {
	
	public static Sender produceMail(){
		return new MailSender();
	}
	
	public static Sender produceSms(){
		return new SmsSender();
	}
}

public class FactoryTest {
 
	public static void main(String[] args) {	
		Sender sender = SendFactory.produceMail();
		sender.Send();
	}
}

输出:this is mailsender!

总体来说,工厂模式适合:凡是出现了大量的产品需要创建,并且具有共同的接口时,可以通过工厂方法模式进行创建。 在以上的三种模式中,第一种如果传入的字符串有误,不能正确创建对象,第三种相对于第二种,不需要实例化工厂类, 所以,大多数情况下,我们会选用第三种——静态工厂方法模式。

2、抽象工厂模式(Abstract Factory)

工厂方法模式有一个问题就是,类的创建依赖工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则,所以,从设计角度考虑,有一定的问题,如何解决? 就用到抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。因为抽象工厂不太好理解,我们先看看图,然后就和代码,就比较容易理解。

avatar

请看例子:

public interface Sender {
	public void Send();
}

两个实现类:


public class MailSender implements Sender {
	@Override
	public void Send() {
		System.out.println("this is mailsender!");
	}
}
public class SmsSender implements Sender {
 
	@Override
	public void Send() {
		System.out.println("this is sms sender!");
	}
}

两个工厂类:

public class SendMailFactory implements Provider {
	
	@Override
	public Sender produce(){
		return new MailSender();
	}
}
public class SendSmsFactory implements Provider{
 
	@Override
	public Sender produce() {
		return new SmsSender();
	}
}

在提供一个接口:

public interface Provider {
	public Sender produce();
}

测试类:


public class Test {
 
	public static void main(String[] args) {
		Provider provider = new SendMailFactory();
		Sender sender = provider.produce();
		sender.Send();
	}
}

其实这个模式的好处就是,如果你现在想增加一个功能: 发及时信息,则只需做一个实现类,实现Sender接口,同时做一个工厂类,实现Provider接口,就OK了,无需去改动现成的代码。这样做,拓展性较好!

简单工厂模式总结 简单工厂模式的主要优点如下:

工厂类包含必要的判断逻辑,可以决定在什么时候创建哪一个产品类的实例,客户端可以免除直接创建产品对象的职责,而仅仅“消费”产品,简单工厂模式实现了对象创建和使用的分离。 客户端无须知道所创建的具体产品类的类名,只需要知道具体产品类所对应的参数即可,对于一些复杂的类名,通过简单工厂模式可以在一定程度减少使用者的记忆量。 通过引入配置文件,可以在不修改任何客户端代码的情况下更换和增加新的具体产品类,在一定程度上提高了系统的灵活性。 简单工厂模式的主要缺点如下:

由于工厂类集中了所有产品的创建逻辑,职责过重,一旦不能正常工作,整个系统都要受到影响。 使用简单工厂模式势必会增加系统中类的个数(引入了新的工厂类),增加了系统的复杂度和理解难度。 系统扩展困难,一旦添加新产品就不得不修改工厂逻辑,在产品类型较多时,有可能造成工厂逻辑过于复杂,不利于系统的扩展和维护,且违背开闭原则。 简单工厂模式由于使用了静态工厂方法,造成工厂角色无法形成基于继承的等级结构。 适用场景:

工厂类负责创建的对象比较少,由于创建的对象较少,不会造成工厂方法中的业务逻辑太过复杂。 客户端只知道传入工厂类的参数,对于如何创建对象并不关心。

简单工厂模式的典型应用及源码分析 Calendar 类获取日历类对象 Calendar 抽象类,该类的子类有 BuddhistCalendar、JapaneseImperialCalendar、GregorianCalendar、RollingCalendar等

getInstance方法,根据参数获取一个Calendar子类对象,该方法实际将参数传给 createCalendar 方法,createCalendar 在根据参数通过 provider 或 switch 或者 if-else 创建相应的子类对象

以下为 Java8 中的 Calendar 类代码,Java7 中的实现为 if-else 方式



public static Calendar getInstance(TimeZone zone, Locale aLocale) {
    return createCalendar(zone, aLocale);
}

private static Calendar createCalendar(TimeZone zone, Locale aLocale) {
    CalendarProvider provider = LocaleProviderAdapter.getAdapter(CalendarProvider.class, aLocale).getCalendarProvider();
    if (provider != null) {
        try {
            return provider.getInstance(zone, aLocale);
        } catch (IllegalArgumentException iae) {
        }
    }

    Calendar cal = null;

    if (aLocale.hasExtensions()) {
        String caltype = aLocale.getUnicodeLocaleType("ca");
        if (caltype != null) {
            switch (caltype) {
                case "buddhist":
                    cal = new BuddhistCalendar(zone, aLocale); break;
                case "japanese":
                    cal = new JapaneseImperialCalendar(zone, aLocale); break;
                case "gregory":
                    cal = new GregorianCalendar(zone, aLocale); break;
            }
        }
    }
    if (cal == null) {
        if (aLocale.getLanguage() == "th" && aLocale.getCountry() == "TH") {
            cal = new BuddhistCalendar(zone, aLocale);
        } else if (aLocale.getVariant() == "JP" && aLocale.getLanguage() == "ja" && aLocale.getCountry() == "JP") {
            cal = new JapaneseImperialCalendar(zone, aLocale);
        } else {
            cal = new GregorianCalendar(zone, aLocale);
        }
    }
    return cal;
}

avatar

可以看到抽象产品角色和工厂角色都由 Calendar 担任,具体产品角色由 Calendar 的子类担任

JDBC 获取数据库连接 一般JDBC获取MySQL连接的写法如下:

//加载MySql驱动
Class.forName("com.mysql.jdbc.Driver");
DriverManager.getConnection("jdbc:mysql://127.0.0.1:3306/test", "root", "123456");

首先通过反射加载驱动类 com.mysql.jdbc.Driver 类,然后再通过 DriverManager 获取连接

看看 com.mysql.jdbc.Driver 的代码,该类主要的内容是静态代码块,其会随着类的加载一块执行


public class Driver extends NonRegisteringDriver implements java.sql.Driver {
    public Driver() throws SQLException {
    }
    static {
        try {
            DriverManager.registerDriver(new Driver());
        } catch (SQLException var1) {
            throw new RuntimeException("Can't register driver!");
        }
    }
}

静态代码块:new 一个 Driver 类并注册到 DriverManager 驱动管理类中


public static synchronized void registerDriver(java.sql.Driver driver, DriverAction da) throws SQLException {
    /* Register the driver if it has not already been added to our list */
    if(driver != null) {
        registeredDrivers.addIfAbsent(new DriverInfo(driver, da));
    } else {
        throw new NullPointerException();
    }
    println("registerDriver: " + driver);
}

其中的 registeredDrivers 是一个 CopyOnWriteArrayList 对象

private final static CopyOnWriteArrayList<DriverInfo> registeredDrivers = new CopyOnWriteArrayList<>();

CopyOnWriteArrayList是Java并发包中提供的一个并发容器,它是个线程安全且读操作无锁的ArrayList,写操作则通过创建底层数组的新副本来实现,是一种读写分离的并发策略,我们也可以称这种容器为”写时复制器”,Java并发包中类似的容器还有CopyOnWriteSet 一篇CopyOnWriteArrayList的文章:https://www.cnblogs.com/chengxiao/p/6881974.html

再通过 DriverManager.getConnection 获取连接对象的主要代码如下: 通过for循环从已注册的驱动中(registeredDrivers)获取驱动,尝试连接,成功则返回连接

private static Connection getConnection(String url, java.util.Properties info, Class<?> caller) throws SQLException {
    // ...省略...
    println("DriverManager.getConnection(\"" + url + "\")");
    for(DriverInfo aDriver : registeredDrivers) {
        // If the caller does not have permission to load the driver then skip it.
        if(isDriverAllowed(aDriver.driver, callerCL)) {
            try {
                println("    trying " + aDriver.driver.getClass().getName());
                Connection con = aDriver.driver.connect(url, info);
                if (con != null) {
                    // Success!
                    println("getConnection returning " + aDriver.driver.getClass().getName());
                    return (con);
                }
            } catch (SQLException ex) {
                if (reason == null) {
                    reason = ex;
                }
            }
        } else {
            println("    skipping: " + aDriver.getClass().getName());
        }
    }
    // ...省略...
}

avatar

工厂角色为 DriverManager 类,抽象产品角色为 Connection,具体产品角色则很多

Logback 中的 LoggerFactory 获取 Logger 对象 查看 LoggerFactory 类的 getLogger 方法,可看到调用了 iLoggerFactory.getLogger(),其中 iLoggerFactory 是一个接口

    
    public static Logger getLogger(String name) {
        ILoggerFactory iLoggerFactory = getILoggerFactory();
        return iLoggerFactory.getLogger(name);
    }
    public static Logger getLogger(Class clazz) {
        return getLogger(clazz.getName());
    }

iLoggerFactory 接口只有一个 getLogger 方法

    public interface ILoggerFactory {
        Logger getLogger(String var1);
    }

####3、单例模式(Singleton)

单例对象(Singleton)是一种常用的设计模式。在Java应用中,单例对象能保证在一个JVM中,该对象只有一个实例存在。这样的模式有几个好处:

1、某些类创建比较频繁,对于一些大型的对象,这是一笔很大的系统开销。

2、省去了new操作符,降低了系统内存的使用频率,减轻GC压力。

3、有些类如交易所的核心交易引擎,控制着交易流程,如果该类可以创建多个的话,系统完全乱了。(比如一个军队出现了多个司令员同时指挥,肯定会乱成一团),所以只有使用单例模式,才能保证核心交易服务器独立控制整个流程。

首先我们写一个简单的单例类:

public class Singleton {
 
	/* 持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载 */
	private static Singleton instance = null;
 
	/* 私有构造方法,防止被实例化 */
	private Singleton() {
	}
 
	/* 静态工程方法,创建实例 */
	public static Singleton getInstance() {
		if (instance == null) {
			instance = new Singleton();
		}
		return instance;
	}
 
	/* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */
	public Object readResolve() {
		return instance;
	}
}

这个类可以满足基本要求,但是,像这样毫无线程安全保护的类,如果我们把它放入多线程的环境下,肯定就会出现问题了,如何解决?我们首先会想到对getInstance方法加synchronized关键字,如下:


public static synchronized Singleton getInstance(){
		if (instance == null) {
			instance = new Singleton();
		}
		return instance;
	}

但是,synchronized关键字锁住的是这个对象,这样的用法,在性能上会有所下降,因为每次调用getInstance(),都要对对象上锁,事实上,只有在第一次创建对象的时候需要加锁,之后就不需要了,所以,这个地方需要改进。我们改成下面这个:

public static Singleton getInstance() {
		if (instance == null) {
			synchronized (instance) {
				if (instance == null) {
					instance = new Singleton();
				}
			}
		}
		return instance;
	}

似乎解决了之前提到的问题,将synchronized关键字加在了内部,也就是说当调用的时候是不需要加锁的,只有在instance为null,并创建对象的时候才需要加锁,性能有一定的提升。 但是,这样的情况,还是有可能有问题的,看下面的情况:在Java指令中创建对象和赋值操作是分开进行的,也就是说instance = new Singleton(); 语句是分两步执行的。但是JVM并不保证这两个操作的先后顺序,也就是说有可能JVM会为新的Singleton实例分配空间,然后直接赋值给instance成员,然后再去初始化这个Singleton实例。 这样就可能出错了,我们以A、B两个线程为例:

a>A、B线程同时进入了第一个if判断

b>A首先进入synchronized块,由于instance为null,所以它执行instance = new Singleton();

c>由于JVM内部的优化机制,JVM先画出了一些分配给Singleton实例的空白内存,并赋值给instance成员(注意此时JVM没有开始初始化这个实例),然后A离开了synchronized块。

d>B进入synchronized块,由于instance此时不是null,因此它马上离开了synchronized块并将结果返回给调用该方法的程序。

e>此时B线程打算使用Singleton实例,却发现它没有被初始化,于是错误发生了。

所以程序还是有可能发生错误,其实程序在运行过程是很复杂的,从这点我们就可以看出,尤其是在写多线程环境下的程序更有难度,有挑战性。我们对该程序做进一步优化:


private static class SingletonFactory{         
        private static Singleton instance = new Singleton();         
    }         
    public static Singleton getInstance(){         
        return SingletonFactory.instance;         
    }
    

实际情况是,单例模式使用内部类来维护单例的实现,JVM内部的机制能够保证当一个类被加载的时候,这个类的加载过程是线程互斥的。 这样当我们第一次调用getInstance的时候,JVM能够帮我们保证instance只被创建一次,并且会保证把赋值给instance的内存初始化完毕,这样我们就不用担心上面的问题。 同时该方法也只会在第一次调用的时候使用互斥机制,这样就解决了低性能问题。这样我们暂时总结一个完美的单例模式:


public class Singleton {
 
	/* 私有构造方法,防止被实例化 */
	private Singleton() {
	}
 
	/* 此处使用一个内部类来维护单例 */
	private static class SingletonFactory {
		private static Singleton instance = new Singleton();
	}
 
	/* 获取实例 */
	public static Singleton getInstance() {
		return SingletonFactory.instance;
	}
 
	/* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */
	public Object readResolve() {
		return getInstance();
	}
}

其实说它完美,也不一定,如果在构造函数中抛出异常,实例将永远得不到创建,也会出错。所以说,十分完美的东西是没有的,我们只能根据实际情况,选择最适合自己应用场景的实现方法。 也有人这样实现:因为我们只需要在创建类的时候进行同步,所以只要将创建和getInstance()分开,单独为创建加synchronized关键字,也是可以的:


public class SingletonTest {
 
	private static SingletonTest instance = null;
 
	private SingletonTest() {
	}
 
	private static synchronized void syncInit() {
		if (instance == null) {
			instance = new SingletonTest();
		}
	}
 
	public static SingletonTest getInstance() {
		if (instance == null) {
			syncInit();
		}
		return instance;
	}
}

考虑性能的话,整个程序只需创建一次实例,所以性能也不会有什么影响。

补充:采用"影子实例"的办法为单例对象的属性同步更新

public class SingletonTest {
 
	private static SingletonTest instance = null;
	private Vector properties = null;
 
	public Vector getProperties() {
		return properties;
	}
 
	private SingletonTest() {
	}
 
	private static synchronized void syncInit() {
		if (instance == null) {
			instance = new SingletonTest();
		}
	}
 
	public static SingletonTest getInstance() {
		if (instance == null) {
			syncInit();
		}
		return instance;
	}
 
	public void updateProperties() {
		SingletonTest shadow = new SingletonTest();
		properties = shadow.getProperties();
	}
}

通过单例模式的学习告诉我们:

1、单例模式理解起来简单,但是具体实现起来还是有一定的难度。

2、synchronized关键字锁定的是对象,在用的时候,一定要在恰当的地方使用(注意需要使用锁的对象和过程,可能有的时候并不是整个对象及整个过程都需要锁)。

到这儿,单例模式基本已经讲完了,结尾处,笔者突然想到另一个问题,就是采用类的静态方法,实现单例模式的效果,也是可行的,此处二者有什么不同?

首先,静态类不能实现接口。(从类的角度说是可以的,但是那样就破坏了静态了。因为接口中不允许有static修饰的方法,所以即使实现了也是非静态的)

其次,单例可以被延迟初始化,静态类一般在第一次加载是初始化。之所以延迟加载,是因为有些类比较庞大,所以延迟加载有助于提升性能。

再次,单例类可以被继承,他的方法可以被覆写。但是静态类内部方法都是static,无法被覆写。

最后一点,单例类比较灵活,毕竟从实现上只是一个普通的Java类,只要满足单例的基本需求,你可以在里面随心所欲的实现一些其它功能,但是静态类不行。 从上面这些概括中,基本可以看出二者的区别,但是,从另一方面讲,我们上面最后实现的那个单例模式,内部就是用一个静态类来实现的,所以,二者有很大的关联,只是我们考虑问题的层面不同罢了。 两种思想的结合,才能造就出完美的解决方案,就像HashMap采用数组+链表来实现一样,其实生活中很多事情都是这样,单用不同的方法来处理问题,总是有优点也有缺点,最完美的方法是,结合各个方法的优点,才能最好的解决问题!

####4、建造者模式(Builder) 工厂类模式提供的是创建单个类的模式,而建造者模式则是将各种产品集中起来进行管理,用来创建复合对象,所谓复合对象就是指某个类具有不同的属性,其实建造者模式就是前面抽象工厂模式和最后的Test结合起来得到的。我们看一下代码:

还和前面一样,一个Sender接口,两个实现类MailSender和SmsSender。最后,建造者类如下:


public class Builder {
	
	private List<Sender> list = new ArrayList<Sender>();
	
	public void produceMailSender(int count){
		for(int i=0; i<count; i++){
			list.add(new MailSender());
		}
	}
	
	public void produceSmsSender(int count){
		for(int i=0; i<count; i++){
			list.add(new SmsSender());
		}
	}
}

测试类:

public class Test {
 
	public static void main(String[] args) {
		Builder builder = new Builder();
		builder.produceMailSender(10);
	}
}

从这点看出,建造者模式将很多功能集成到一个类里,这个类可以创造出比较复杂的东西。 所以与工程模式的区别就是:工厂模式关注的是创建单个产品,而建造者模式则关注创建符合对象,多个部分。 因此,是选择工厂模式还是建造者模式,依实际情况而定。

####5、原型模式(Prototype)

原型模式虽然是创建型的模式,但是与工程模式没有关系,从名字即可看出,该模式的思想就是将一个对象作为原型,对其进行复制、克隆,产生一个和原对象类似的新对象。 本小结会通过对象的复制,进行讲解。在Java中,复制对象是通过clone()实现的,先创建一个原型类:

public class Prototype implements Cloneable {
 
	public Object clone() throws CloneNotSupportedException {
		Prototype proto = (Prototype) super.clone();
		return proto;
	}
}

很简单,一个原型类,只需要实现Cloneable接口,覆写clone方法,此处clone方法可以改成任意的名称,因为Cloneable接口是个空接口,你可以任意定义实现类的方法名, 如cloneA或者cloneB,因为此处的重点是super.clone()这句话,super.clone()调用的是Object的clone()方法, 而在Object类中,clone()是native的,具体怎么实现,我会在另一篇文章中,关于解读Java中本地方法的调用,此处不再深究。 在这儿,我将结合对象的浅复制和深复制来说一下,首先需要了解对象深、浅复制的概念:

浅复制:将一个对象复制后,基本数据类型的变量都会重新创建,而引用类型,指向的还是原对象所指向的。

深复制:将一个对象复制后,不论是基本数据类型还有引用类型,都是重新创建的。简单来说,就是深复制进行了完全彻底的复制,而浅复制不彻底。

此处,写一个深浅复制的例子:

public class Prototype implements Cloneable, Serializable {
 
	private static final long serialVersionUID = 1L;
	private String string;
 
	private SerializableObject obj;
 
	/* 浅复制 */
	public Object clone() throws CloneNotSupportedException {
		Prototype proto = (Prototype) super.clone();
		return proto;
	}
 
	/* 深复制 */
	public Object deepClone() throws IOException, ClassNotFoundException {
 
		/* 写入当前对象的二进制流 */
		ByteArrayOutputStream bos = new ByteArrayOutputStream();
		ObjectOutputStream oos = new ObjectOutputStream(bos);
		oos.writeObject(this);
 
		/* 读出二进制流产生的新对象 */
		ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray());
		ObjectInputStream ois = new ObjectInputStream(bis);
		return ois.readObject();
	}
 
	public String getString() {
		return string;
	}
 
	public void setString(String string) {
		this.string = string;
	}
 
	public SerializableObject getObj() {
		return obj;
	}
 
	public void setObj(SerializableObject obj) {
		this.obj = obj;
	}
 
}
 
class SerializableObject implements Serializable {
	private static final long serialVersionUID = 1L;
}

要实现深复制,需要采用流的形式读入当前对象的二进制输入,再写出二进制数据对应的对象。

适配器模式、装饰模式、代理模式、外观模式、桥接模式、组合模式、享元模式。 其中对象的适配器模式是各种模式的起源,看下面的图:

avatar

####6、适配器模式(Adapter)

适配器模式将某个类的接口转换成客户端期望的另一个接口表示,目的是消除由于接口不匹配所造成的类的兼容性问题。 主要分为三类:类的适配器模式、对象的适配器模式、接口的适配器模式。首先,我们来看看类的适配器模式,先看类图:

avatar

核心思想就是:有一个Source类,拥有一个方法,待适配,目标接口时Targetable, 通过Adapter类,将Source的功能扩展到Targetable里,看代码:

public class Source {
 
	public void method1() {
		System.out.println("this is original method!");
	}
}
public interface Targetable {
 
	/* 与原类中的方法相同 */
	public void method1();
 
	/* 新类的方法 */
	public void method2();
}
public class Adapter extends Source implements Targetable {
 
	@Override
	public void method2() {
		System.out.println("this is the targetable method!");
	}
}

Adapter类继承Source类,实现Targetable接口,下面是测试类:

public class AdapterTest {
 
	public static void main(String[] args) {
		Targetable target = new Adapter();
		target.method1();
		target.method2();
	}
}

输出:

this is original method! this is the targetable method!

这样Targetable接口的实现类就具有了Source类的功能。

对象的适配器模式

基本思路和类的适配器模式相同,只是将Adapter类作修改,这次不继承Source类,而是持有Source类的实例,以达到解决兼容性的问题。看图:

avatar

只需要修改Adapter类的源码即可:


public class Wrapper implements Targetable {
 
	private Source source;
	
	public Wrapper(Source source){
		super();
		this.source = source;
	}
	@Override
	public void method2() {
		System.out.println("this is the targetable method!");
	}
 
	@Override
	public void method1() {
		source.method1();
	}
}

测试类:


public class AdapterTest {
 
	public static void main(String[] args) {
		Source source = new Source();
		Targetable target = new Wrapper(source);
		target.method1();
		target.method2();
	}
}

输出与第一种一样,只是适配的方法不同而已。

第三种适配器模式是接口的适配器模式,接口的适配器是这样的:有时我们写的一个接口中有多个抽象方法, 当我们写该接口的实现类时,必须实现该接口的所有方法,这明显有时比较浪费,因为并不是所有的方法都是我们需要的, 有时只需要某一些,此处为了解决这个问题,我们引入了接口的适配器模式,借助于一个抽象类,该抽象类实现了该接口,实现了所有的方法, 而我们不和原始的接口打交道,只和该抽象类取得联系,所以我们写一个类,继承该抽象类,重写我们需要的方法就行。看一下类图:

avatar

这个很好理解,在实际开发中,我们也常会遇到这种接口中定义了太多的方法,以致于有时我们在一些实现类中并不是都需要。看代码:

public interface Sourceable {
	
	public void method1();
	public void method2();
}

抽象类Wrapper2:


public abstract class Wrapper2 implements Sourceable{
	
	public void method1(){}
	public void method2(){}
}
public class SourceSub1 extends Wrapper2 {
	public void method1(){
		System.out.println("the sourceable interface's first Sub1!");
	}
}
public class SourceSub2 extends Wrapper2 {
	public void method2(){
		System.out.println("the sourceable interface's second Sub2!");
	}
}
public class WrapperTest {
 
	public static void main(String[] args) {
		Sourceable source1 = new SourceSub1();
		Sourceable source2 = new SourceSub2();
		
		source1.method1();
		source1.method2();
		source2.method1();
		source2.method2();
	}
}

测试输出:

the sourceable interface's first Sub1! the sourceable interface's second Sub2!

达到了我们的效果!

 讲了这么多,总结一下三种适配器模式的应用场景:

类的适配器模式:当希望将一个类转换成满足另一个新接口的类时,可以使用类的适配器模式,创建一个新类,继承原有的类,实现新的接口即可。

对象的适配器模式:当希望将一个对象转换成满足另一个新接口的对象时,可以创建一个Wrapper类,持有原类的一个实例,在Wrapper类的方法中,调用实例的方法就行。

接口的适配器模式:当不希望实现一个接口中所有的方法时,可以创建一个抽象类Wrapper,实现所有方法,我们写别的类的时候,继承抽象类即可。

适配器模式总结 主要优点:

将目标类和适配者类解耦,通过引入一个适配器类来重用现有的适配者类,无须修改原有结构。 增加了类的透明性和复用性,将具体的业务实现过程封装在适配者类中,对于客户端类而言是透明的,而且提高了适配者的复用性,同一个适配者类可以在多个不同的系统中复用。 灵活性和扩展性都非常好,通过使用配置文件,可以很方便地更换适配器,也可以在不修改原有代码的基础上增加新的适配器类,完全符合“开闭原则”。 具体来说,类适配器模式还有如下优点:

由于适配器类是适配者类的子类,因此可以在适配器类中置换一些适配者的方法,使得适配器的灵活性更强。 对象适配器模式还有如下优点:

一个对象适配器可以把多个不同的适配者适配到同一个目标; 可以适配一个适配者的子类,由于适配器和适配者之间是关联关系,根据“里氏代换原则”,适配者的子类也可通过该适配器进行适配。 类适配器模式的缺点如下:

对于Java、C#等不支持多重类继承的语言,一次最多只能适配一个适配者类,不能同时适配多个适配者; 适配者类不能为最终类,如在Java中不能为final类,C#中不能为sealed类; 在Java、C#等语言中,类适配器模式中的目标抽象类只能为接口,不能为类,其使用有一定的局限性。 对象适配器模式的缺点如下:

与类适配器模式相比,要在适配器中置换适配者类的某些方法比较麻烦。如果一定要置换掉适配者类的一个或多个方法,可以先做一个适配者类的子类,将适配者类的方法置换掉,然后再把适配者类的子类当做真正的适配者进行适配,实现过程较为复杂。 适用场景:

系统需要使用一些现有的类,而这些类的接口(如方法名)不符合系统的需要,甚至没有这些类的源代码。 想创建一个可以重复使用的类,用于与一些彼此之间没有太大关联的一些类,包括一些可能在将来引进的类一起工作。

####源码分析适配器模式的典型应用

spring AOP中的适配器模式 在Spring的Aop中,使用的 Advice(通知) 来增强被代理类的功能。

Advice的类型有:MethodBeforeAdvice、AfterReturningAdvice、ThrowsAdvice

在每个类型 Advice 都有对应的拦截器,MethodBeforeAdviceInterceptor、AfterReturningAdviceInterceptor、ThrowsAdviceInterceptor

Spring需要将每个 Advice 都封装成对应的拦截器类型,返回给容器,所以需要使用适配器模式对 Advice 进行转换

三个适配者类 Adaptee 如下:

public interface MethodBeforeAdvice extends BeforeAdvice {
    void before(Method var1, Object[] var2, @Nullable Object var3) throws Throwable;
}

public interface AfterReturningAdvice extends AfterAdvice {
    void afterReturning(@Nullable Object var1, Method var2, Object[] var3, @Nullable Object var4) throws Throwable;
}

public interface ThrowsAdvice extends AfterAdvice {
}

目标接口 Target,有两个方法,一个判断 Advice 类型是否匹配,一个是工厂方法,创建对应类型的 Advice 对应的拦截器

public interface AdvisorAdapter {
    boolean supportsAdvice(Advice var1);

    MethodInterceptor getInterceptor(Advisor var1);
}

三个适配器类 Adapter 分别如下,注意其中的 Advice、Adapter、Interceptor之间的对应关系

class MethodBeforeAdviceAdapter implements AdvisorAdapter, Serializable {
	@Override
	public boolean supportsAdvice(Advice advice) {
		return (advice instanceof MethodBeforeAdvice);
	}

	@Override
	public MethodInterceptor getInterceptor(Advisor advisor) {
		MethodBeforeAdvice advice = (MethodBeforeAdvice) advisor.getAdvice();
		return new MethodBeforeAdviceInterceptor(advice);
	}
}

@SuppressWarnings("serial")
class AfterReturningAdviceAdapter implements AdvisorAdapter, Serializable {
	@Override
	public boolean supportsAdvice(Advice advice) {
		return (advice instanceof AfterReturningAdvice);
	}
	@Override
	public MethodInterceptor getInterceptor(Advisor advisor) {
		AfterReturningAdvice advice = (AfterReturningAdvice) advisor.getAdvice();
		return new AfterReturningAdviceInterceptor(advice);
	}
}

class ThrowsAdviceAdapter implements AdvisorAdapter, Serializable {
	@Override
	public boolean supportsAdvice(Advice advice) {
		return (advice instanceof ThrowsAdvice);
	}
	@Override
	public MethodInterceptor getInterceptor(Advisor advisor) {
		return new ThrowsAdviceInterceptor(advisor.getAdvice());
	}
}

客户端 DefaultAdvisorAdapterRegistry

public class DefaultAdvisorAdapterRegistry implements AdvisorAdapterRegistry, Serializable {
    private final List<AdvisorAdapter> adapters = new ArrayList(3);

    public DefaultAdvisorAdapterRegistry() {
        // 这里注册了适配器
        this.registerAdvisorAdapter(new MethodBeforeAdviceAdapter());
        this.registerAdvisorAdapter(new AfterReturningAdviceAdapter());
        this.registerAdvisorAdapter(new ThrowsAdviceAdapter());
    }
    
    public MethodInterceptor[] getInterceptors(Advisor advisor) throws UnknownAdviceTypeException {
        List<MethodInterceptor> interceptors = new ArrayList(3);
        Advice advice = advisor.getAdvice();
        if (advice instanceof MethodInterceptor) {
            interceptors.add((MethodInterceptor)advice);
        }

        Iterator var4 = this.adapters.iterator();

        while(var4.hasNext()) {
            AdvisorAdapter adapter = (AdvisorAdapter)var4.next();
            if (adapter.supportsAdvice(advice)) {   // 这里调用适配器方法
                interceptors.add(adapter.getInterceptor(advisor));  // 这里调用适配器方法
            }
        }

        if (interceptors.isEmpty()) {
            throw new UnknownAdviceTypeException(advisor.getAdvice());
        } else {
            return (MethodInterceptor[])interceptors.toArray(new MethodInterceptor[0]);
        }
    }
    // ...省略...
}    

这里看 while 循环里,逐个取出注册的适配器,调用 supportsAdvice() 方法来判断 Advice 对应的类型,然后调用 getInterceptor() 创建对应类型的拦截器

avatar

这里应该属于对象适配器模式,关键字 instanceof 可看成是 Advice 的方法,不过这里的 Advice 对象是从外部传进来,而不是成员属性

7、装饰模式(Decorator)

顾名思义,装饰模式就是给一个对象增加一些新的功能, 而且是动态的,要求装饰对象和被装饰对象实现同一个接口,装饰对象持有被装饰对象的实例,关系图如下:

avatar

Source类是被装饰类,Decorator类是一个装饰类,可以为Source类动态的添加一些功能,代码如下:

public interface Sourceable {
	public void method();
}
public class Source implements Sourceable {
 
	@Override
	public void method() {
		System.out.println("the original method!");
	}
}

public class Decorator implements Sourceable {
 
	private Sourceable source;
	
	public Decorator(Sourceable source){
		super();
		this.source = source;
	}
	@Override
	public void method() {
		System.out.println("before decorator!");
		source.method();
		System.out.println("after decorator!");
	}
}

测试类:


public class DecoratorTest {
 
	public static void main(String[] args) {
		Sourceable source = new Source();
		Sourceable obj = new Decorator(source);
		obj.method();
	}
}

装饰器模式的应用场景:

1、需要扩展一个类的功能。

2、动态的为一个对象增加功能,而且还能动态撤销。(继承不能做到这一点,继承的功能是静态的,不能动态增删。)

缺点:产生过多相似的对象,不易排错!

8、代理模式(Proxy)

其实每个模式名称就表明了该模式的作用,代理模式就是多一个代理类出来,替原对象进行一些操作,比如我们在租房子的时候回去找中介,为什么呢? 因为你对该地区房屋的信息掌握的不够全面,希望找一个更熟悉的人去帮你做,此处的代理就是这个意思。 再如我们有的时候打官司,我们需要请律师,因为律师在法律方面有专长,可以替我们进行操作,表达我们的想法。先来看看关系图:

avatar

根据上文的阐述,代理模式就比较容易的理解了,我们看下代码:

public interface Sourceable {
	public void method();
}

public class Source implements Sourceable {
 
	@Override
	public void method() {
		System.out.println("the original method!");
	}
}
public class Proxy implements Sourceable {
 
	private Source source;
	public Proxy(){
		super();
		this.source = new Source();
	}
	@Override
	public void method() {
		before();
		source.method();
		atfer();
	}
	private void atfer() {
		System.out.println("after proxy!");
	}
	private void before() {
		System.out.println("before proxy!");
	}
}

测试类:


public class ProxyTest {
 
	public static void main(String[] args) {
		Sourceable source = new Proxy();
		source.method();
	}
 
}

输出:

before proxy! the original method! after proxy!

代理模式的应用场景:

如果已有的方法在使用的时候需要对原有的方法进行改进,此时有两种办法:

1、修改原有的方法来适应。这样违反了“对扩展开放,对修改关闭”的原则。

2、就是采用一个代理类调用原有的方法,且对产生的结果进行控制。这种方法就是代理模式。

使用代理模式,可以将功能划分的更加清晰,有助于后期维护!

9、外观模式(Facade)

外观模式是为了解决类与类之家的依赖关系的,像spring一样,可以将类和类之间的关系配置到配置文件中, 而外观模式就是将他们的关系放在一个Facade类中,降低了类类之间的耦合度,该模式中没有涉及到接口, 看下类图:(我们以一个计算机的启动过程为例)

avatar

我们先看下实现类:


public class CPU {
	
	public void startup(){
		System.out.println("cpu startup!");
	}
	
	public void shutdown(){
		System.out.println("cpu shutdown!");
	}
}

public class Memory {
	
	public void startup(){
		System.out.println("memory startup!");
	}
	
	public void shutdown(){
		System.out.println("memory shutdown!");
	}
}
public class Disk {
	
	public void startup(){
		System.out.println("disk startup!");
	}
	
	public void shutdown(){
		System.out.println("disk shutdown!");
	}
}

public class Computer {
	private CPU cpu;
	private Memory memory;
	private Disk disk;
	
	public Computer(){
		cpu = new CPU();
		memory = new Memory();
		disk = new Disk();
	}
	
	public void startup(){
		System.out.println("start the computer!");
		cpu.startup();
		memory.startup();
		disk.startup();
		System.out.println("start computer finished!");
	}
	
	public void shutdown(){
		System.out.println("begin to close the computer!");
		cpu.shutdown();
		memory.shutdown();
		disk.shutdown();
		System.out.println("computer closed!");
	}
}

User类如下:

public class User {
 
	public static void main(String[] args) {
		Computer computer = new Computer();
		computer.startup();
		computer.shutdown();
	}
}

输出:

start the computer! cpu startup! memory startup! disk startup! start computer finished! begin to close the computer! cpu shutdown! memory shutdown! disk shutdown! computer closed!

如果我们没有Computer类,那么,CPU、Memory、Disk他们之间将会相互持有实例,产生关系,这样会造成严重的依赖, 修改一个类,可能会带来其他类的修改,这不是我们想要看到的,有了Computer类,他们之间的关系被放在了Computer类里, 这样就起到了解耦的作用,这就是外观模式

10、桥接模式(Bridge)

桥接模式就是把事物和其具体实现分开,使他们可以各自独立的变化。桥接的用意是:将抽象化与实现化解耦,使得二者可以独立变化, 像我们常用的JDBC桥DriverManager一样,JDBC进行连接数据库的时候,在各个数据库之间进行切换,基本不需要动太多的代码,甚至丝毫不用动, 原因就是JDBC提供统一接口,每个数据库提供各自的实现,用一个叫做数据库驱动的程序来桥接就行了。我们来看看关系图:

avatar

实现代码:

先定义接口:

public interface Sourceable {
	public void method();
}

分别定义两个实现类:

public class SourceSub1 implements Sourceable {
 
	@Override
	public void method() {
		System.out.println("this is the first sub!");
	}
}

public class SourceSub2 implements Sourceable {
 
	@Override
	public void method() {
		System.out.println("this is the second sub!");
	}
}

定义一个桥,持有Sourceable的一个实例:

public abstract class Bridge {
	private Sourceable source;
 
	public void method(){
		source.method();
	}
	
	public Sourceable getSource() {
		return source;
	}
 
	public void setSource(Sourceable source) {
		this.source = source;
	}
}

public class MyBridge extends Bridge {
	public void method(){
		getSource().method();
	}
}

测试类:

public class BridgeTest {
	
	public static void main(String[] args) {
		
		Bridge bridge = new MyBridge();
		
		/*调用第一个对象*/
		Sourceable source1 = new SourceSub1();
		bridge.setSource(source1);
		bridge.method();
		
		/*调用第二个对象*/
		Sourceable source2 = new SourceSub2();
		bridge.setSource(source2);
		bridge.method();
	}
}

output:

this is the first sub! this is the second sub!

这样,就通过对Bridge类的调用,实现了对接口Sourceable的实现类SourceSub1和SourceSub2的调用。 接下来我再画个图,大家就应该明白了,因为这个图是我们JDBC连接的原理,有数据库学习基础的,一结合就都懂了。

avatar

11、组合模式(Composite)

组合模式有时又叫部分-整体模式在处理类似树形结构的问题时比较方便,看看关系图:

avatar

直接来看代码:


public class TreeNode {
	
	private String name;
	private TreeNode parent;
	private Vector<TreeNode> children = new Vector<TreeNode>();
	
	public TreeNode(String name){
		this.name = name;
	}
 
	public String getName() {
		return name;
	}
 
	public void setName(String name) {
		this.name = name;
	}
 
	public TreeNode getParent() {
		return parent;
	}
 
	public void setParent(TreeNode parent) {
		this.parent = parent;
	}
	
	//添加孩子节点
	public void add(TreeNode node){
		children.add(node);
	}
	
	//删除孩子节点
	public void remove(TreeNode node){
		children.remove(node);
	}
	
	//取得孩子节点
	public Enumeration<TreeNode> getChildren(){
		return children.elements();
	}
}
public class Tree {
 
	TreeNode root = null;
 
	public Tree(String name) {
		root = new TreeNode(name);
	}
 
	public static void main(String[] args) {
		Tree tree = new Tree("A");
		TreeNode nodeB = new TreeNode("B");
		TreeNode nodeC = new TreeNode("C");
		
		nodeB.add(nodeC);
		tree.root.add(nodeB);
		System.out.println("build the tree finished!");
	}
}

使用场景:将多个对象组合在一起进行操作,常用于表示树形结构中,例如二叉树,数等。

12、享元模式(Flyweight)

享元模式的主要目的是实现对象的共享,即共享池,当系统中对象多的时候可以减少内存的开销,通常与工厂模式一起使用。

avatar

FlyWeightFactory负责创建和管理享元单元,当一个客户端请求时,工厂需要检查当前对象池中是否有符合条件的对象, 如果有,就返回已经存在的对象,如果没有,则创建一个新对象,FlyWeight是超类。一提到共享池,我们很容易联想到Java里面的JDBC连接池, 想想每个连接的特点,我们不难总结出:适用于作共享的一些个对象,他们有一些共有的属性, 就拿数据库连接池来说,url、driverClassName、username、password及dbname, 这些属性对于每个连接来说都是一样的,所以就适合用享元模式来处理,建一个工厂类,将上述类似属性作为内部数据,其它的作为外部数据, 在方法调用时,当做参数传进来,这样就节省了空间,减少了实例的数量。

看个例子:

avatar

看下数据库连接池的代码:


public class ConnectionPool {
	
	private Vector<Connection> pool;
	
	/*公有属性*/
	private String url = "jdbc:mysql://localhost:3306/test";
	private String username = "root";
	private String password = "root";
	private String driverClassName = "com.mysql.jdbc.Driver";
 
	private int poolSize = 100;
	private static ConnectionPool instance = null;
	Connection conn = null;
 
	/*构造方法,做一些初始化工作*/
	private ConnectionPool() {
		pool = new Vector<Connection>(poolSize);
 
		for (int i = 0; i < poolSize; i++) {
			try {
				Class.forName(driverClassName);
				conn = DriverManager.getConnection(url, username, password);
				pool.add(conn);
			} catch (ClassNotFoundException e) {
				e.printStackTrace();
			} catch (SQLException e) {
				e.printStackTrace();
			}
		}
	}
 
	/* 返回连接到连接池 */
	public synchronized void release() {
		pool.add(conn);
	}
 
	/* 返回连接池中的一个数据库连接 */
	public synchronized Connection getConnection() {
		if (pool.size() > 0) {
			Connection conn = pool.get(0);
			pool.remove(conn);
			return conn;
		} else {
			return null;
		}
	}
}

通过连接池的管理,实现了数据库连接的共享,不需要每一次都重新创建连接,节省了数据库重新创建的开销,提升了系统的性能!

第三种设计模式——行为型模式, 共11种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式 、访问者模式、中介者模式、解释器模式。 先来张图,看看这11中模式的关系:
第一类:通过父类与子类的关系进行实现。
第二类:两个类之间。
第三类:类的状态。
第四类:通过中间类

avatar

13、策略模式(strategy)

策略模式定义了一系列算法,并将每个算法封装起来,使他们可以相互替换,且算法的变化不会影响到使用算法的客户。 需要设计一个接口,为一系列实现类提供统一的方法,多个实现类实现该接口,设计一个抽象类(可有可无,属于辅助类),提供辅助函数,关系图如下:

avatar

中ICalculator提供同意的方法,

AbstractCalculator是辅助类,提供辅助方法,接下来,依次实现下每个类:

首先统一接口:

public interface ICalculator {
	public int calculate(String exp);
}

辅助类:

public abstract class AbstractCalculator {
	
	public int[] split(String exp,String opt){
		String array[] = exp.split(opt);
		int arrayInt[] = new int[2];
		arrayInt[0] = Integer.parseInt(array[0]);
		arrayInt[1] = Integer.parseInt(array[1]);
		return arrayInt;
	}
}

三个实现类:


public class Plus extends AbstractCalculator implements ICalculator {
 
	@Override
	public int calculate(String exp) {
		int arrayInt[] = split(exp,"\\+");
		return arrayInt[0]+arrayInt[1];
	}
}
public class Minus extends AbstractCalculator implements ICalculator {
	@Override
	public int calculate(String exp) {
		int arrayInt[] = split(exp,"-");
		return arrayInt[0]-arrayInt[1];
	}
public class Multiply extends AbstractCalculator implements ICalculator {
	@Override
	public int calculate(String exp) {
		int arrayInt[] = split(exp,"\\*");
		return arrayInt[0]*arrayInt[1];
	}
}

简单的测试类:

public class StrategyTest {
 
	public static void main(String[] args) {
		String exp = "2+8";
		ICalculator cal = new Plus();
		int result = cal.calculate(exp);
		System.out.println(result);
	}
}

我跟踪下这个小程序的执行过程:首先将exp和"\+"做参数,调用AbstractCalculator类里的calculate(String,String)方法,在calculate(String,String)里调用同类的split(),之后再调用calculate(int ,int)方法, 从这个方法进入到子类中,执行完return num1 + num2后,将值返回到AbstractCalculator类,赋给result,打印出来。正好验证了我们开头的思路。

14、模板方法模式(Template Method)

解释一下模板方法模式,就是指:一个抽象类中,有一个主方法,再定义1...n个方法,可以是抽象的, 也可以是实际的方法,定义一个类,继承该抽象类,重写抽象方法,通过调用抽象类,实现对子类的调用,先看个关系图:

avatar

就是在AbstractCalculator类中定义一个主方法calculate,calculate()调用spilt()等, Plus和Minus分别继承AbstractCalculator类,通过对AbstractCalculator的调用实现对子类的调用,看下面的例子:


public abstract class AbstractCalculator {
	
	/*主方法,实现对本类其它方法的调用*/
	public final int calculate(String exp,String opt){
		int array[] = split(exp,opt);
		return calculate(array[0],array[1]);
	}
	
	/*被子类重写的方法*/
	abstract public int calculate(int num1,int num2);
	
	public int[] split(String exp,String opt){
		String array[] = exp.split(opt);
		int arrayInt[] = new int[2];
		arrayInt[0] = Integer.parseInt(array[0]);
		arrayInt[1] = Integer.parseInt(array[1]);
		return arrayInt;
	}
}

public class Plus extends AbstractCalculator {
 
	@Override
	public int calculate(int num1,int num2) {
		return num1 + num2;
	}
}

测试类:


public class StrategyTest {
 
	public static void main(String[] args) {
		String exp = "8+8";
		AbstractCalculator cal = new Plus();
		int result = cal.calculate(exp, "\\+");
		System.out.println(result);
	}
}

我跟踪下这个小程序的执行过程:首先将exp和"\+"做参数,调用AbstractCalculator类里的calculate(String,String)方法, 在calculate(String,String)里调用同类的split(),之后再调用calculate(int ,int)方法,从这个方法进入到子类中, 执行完return num1 + num2后,将值返回到AbstractCalculator类,赋给result,打印出来。正好验证了我们开头的思路。

15、观察者模式(Observer)

包括这个模式在内的接下来的四个模式,都是类和类之间的关系,不涉及到继承,学的时候应该 记得归纳,记得本文最开始的那个图。 观察者模式很好理解,类似于邮件订阅和RSS订阅,当我们浏览一些博客或wiki时,经常会看到RSS图标,就这的意思是, 当你订阅了该文章,如果后续有更新,会及时通知你。其实,简单来讲就一句话:当一个对象变化时,其它依赖该对象的对象都会收到通知, 并且随着变化!对象之间是一种一对多的关系。先来看看关系图:

avatar

我解释下这些类的作用:MySubject类就是我们的主对象,Observer1和Observer2是依赖于MySubject的对象,当MySubject变化时, Observer1和Observer2必然变化。AbstractSubject类中定义着需要监控的对象列表,可以对其进行修改:增加或删除被监控对象, 且当MySubject变化时,负责通知在列表内存在的对象。我们看实现代码:

一个Observer接口:

public interface Observer {
	public void update();
}

两个实现类:

public class Observer1 implements Observer {
 
	@Override
	public void update() {
		System.out.println("observer1 has received!");
	}
}

public class Observer2 implements Observer {
 
	@Override
	public void update() {
		System.out.println("observer2 has received!");
	}
 
}

Subject接口及实现类:

public interface Subject {
	
	/*增加观察者*/
	public void add(Observer observer);
	
	/*删除观察者*/
	public void del(Observer observer);
	
	/*通知所有的观察者*/
	public void notifyObservers();
	
	/*自身的操作*/
	public void operation();
}

public abstract class AbstractSubject implements Subject {
 
	private Vector<Observer> vector = new Vector<Observer>();
	@Override
	public void add(Observer observer) {
		vector.add(observer);
	}
 
	@Override
	public void del(Observer observer) {
		vector.remove(observer);
	}
 
	@Override
	public void notifyObservers() {
		Enumeration<Observer> enumo = vector.elements();
		while(enumo.hasMoreElements()){
			enumo.nextElement().update();
		}
	}
}

public class MySubject extends AbstractSubject {
 
	@Override
	public void operation() {
		System.out.println("update self!");
		notifyObservers();
	}
 
}

测试类:

public class ObserverTest {
 
	public static void main(String[] args) {
		Subject sub = new MySubject();
		sub.add(new Observer1());
		sub.add(new Observer2());
		
		sub.operation();
	}
 
}

运行结果
update self!
observer1 has received!
observer2 has received!

16、迭代子模式(Iterator)

顾名思义,迭代器模式就是顺序访问聚集中的对象,一般来说,集合中非常常见,如果对集合类比较熟悉的话,理解本模式会十分轻松。 这句话包含两层意思:一是需要遍历的对象,即聚集对象,二是迭代器对象,用于对聚集对象进行遍历访问。我们看下关系图:

avatar

这个思路和我们常用的一模一样,MyCollection中定义了集合的一些操作, MyIterator中定义了一系列迭代操作,且持有Collection实例,我们来看看实现代码:

两个接口:

public interface Collection {
	
	public Iterator iterator();
	
	/*取得集合元素*/
	public Object get(int i);
	
	/*取得集合大小*/
	public int size();
}
public interface Iterator {
	//前移
	public Object previous();
	
	//后移
	public Object next();
	public boolean hasNext();
	
	//取得第一个元素
	public Object first();
}

两个实现:

public class MyCollection implements Collection {
 
	public String string[] = {"A","B","C","D","E"};
	@Override
	public Iterator iterator() {
		return new MyIterator(this);
	}
 
	@Override
	public Object get(int i) {
		return string[i];
	}
 
	@Override
	public int size() {
		return string.length;
	}
}

public class MyIterator implements Iterator {
 
	private Collection collection;
	private int pos = -1;
	
	public MyIterator(Collection collection){
		this.collection = collection;
	}
	
	@Override
	public Object previous() {
		if(pos > 0){
			pos--;
		}
		return collection.get(pos);
	}
 
	@Override
	public Object next() {
		if(pos<collection.size()-1){
			pos++;
		}
		return collection.get(pos);
	}
 
	@Override
	public boolean hasNext() {
		if(pos<collection.size()-1){
			return true;
		}else{
			return false;
		}
	}
 
	@Override
	public Object first() {
		pos = 0;
		return collection.get(pos);
	}
 
}

测试类:

public class Test {
 
	public static void main(String[] args) {
		Collection collection = new MyCollection();
		Iterator it = collection.iterator();
		
		while(it.hasNext()){
			System.out.println(it.next());
		}
	}
}

空文件

简介

介绍Java中23种设计模式的概念,应用场景等情况,并结合他们的特点及设计模式的原则进行分析 展开 收起
Java
取消

发行版

暂无发行版

贡献者

全部

近期动态

加载更多
不能加载更多了
Java
1
https://gitee.com/juniorshy/DesignPattern.git
git@gitee.com:juniorshy/DesignPattern.git
juniorshy
DesignPattern
DesignPattern
master

搜索帮助