1 Star 0 Fork 0

jun.zhang/CapsNet-pytorch

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
BSD-3-Clause

Dynamic Routing Between Capsules - PyTorch implementation

PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour, Nicholas Frosst and Geoffrey E. Hinton.

The hyperparameters and data augmentation strategy strictly follow the paper.

Requirements

Only PyTorch with torchvision is required (tested on pytorch 0.2.0 and 0.3.0). Jupyter and matplotlib is required to run the notebook with visualizations.

Usage

Train the model by running

python net.py

Optional arguments and default values:

  --batch-size N          input batch size for training (default: 128)
  --test-batch-size N     input batch size for testing (default: 1000)
  --epochs N              number of epochs to train (default: 250)
  --lr LR                 learning rate (default: 0.001)
  --no-cuda               disables CUDA training
  --seed S                random seed (default: 1)
  --log-interval N        how many batches to wait before logging training
                          status (default: 10)
  --routing_iterations    number of iterations for routing algorithm (default: 3)
  --with_reconstruction   should reconstruction layers be used

MNIST dataset will be downloaded automatically.

Results

The network trained with reconstruction and 3 routing iterations on MNIST dataset achieves 99.65% accuracy on test set. The test loss is still slightly decreasing, so the accuracy could probably be improved with more training and more careful learning rate schedule.

Visualizations

We can create visualizations of digit reconstructions from DigitCaps (e.g. Figure 3 in the paper)

Reconstructions

We can also visualize what each dimension of digit capsule represents (Section 5.1, Figure 4 in the paper).

Below, each row shows the reconstruction when one of the 16 dimensions in the DigitCaps representation is tweaked by intervals of 0.05 in the range [−0.25, 0.25].

Perturbations

We can see what individual dimensions represent for digit 7, e.g. dim6 - stroke thickness, dim11 - digit width, dim 15 - vertical shift.

Visualization examples are provided in a jupyter notebook

BSD 3-Clause License Copyright (c) 2019, Adam Bielski All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

简介

PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules 展开 收起
README
BSD-3-Clause
取消

发行版

暂无发行版

贡献者 (2)

全部

近期动态

不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/jz_90/CapsNet-pytorch.git
git@gitee.com:jz_90/CapsNet-pytorch.git
jz_90
CapsNet-pytorch
CapsNet-pytorch
master

搜索帮助