1 Star 0 Fork 0

刘昭 / cntest

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
transaction_signing.go 15.34 KB
一键复制 编辑 原始数据 按行查看 历史
刘昭 提交于 2022-01-25 17:35 . go mod tidy
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package types
import (
"crypto/ecdsa"
"errors"
"fmt"
"math/big"
"gitee.com/liu-zhao234568/cntest/common"
"gitee.com/liu-zhao234568/cntest/crypto"
"gitee.com/liu-zhao234568/cntest/params"
)
var ErrInvalidChainId = errors.New("invalid chain id for signer")
// sigCache is used to cache the derived sender and contains
// the signer used to derive it.
type sigCache struct {
signer Signer
from common.Address
}
// MakeSigner returns a Signer based on the given chain config and block number.
func MakeSigner(config *params.ChainConfig, blockNumber *big.Int) Signer {
var signer Signer
switch {
case config.IsLondon(blockNumber):
signer = NewLondonSigner(config.ChainID)
case config.IsBerlin(blockNumber):
signer = NewEIP2930Signer(config.ChainID)
case config.IsEIP155(blockNumber):
signer = NewEIP155Signer(config.ChainID)
case config.IsHomestead(blockNumber):
signer = HomesteadSigner{}
default:
signer = FrontierSigner{}
}
return signer
}
// LatestSigner returns the 'most permissive' Signer available for the given chain
// configuration. Specifically, this enables support of EIP-155 replay protection and
// EIP-2930 access list transactions when their respective forks are scheduled to occur at
// any block number in the chain config.
//
// Use this in transaction-handling code where the current block number is unknown. If you
// have the current block number available, use MakeSigner instead.
func LatestSigner(config *params.ChainConfig) Signer {
if config.ChainID != nil {
if config.LondonBlock != nil {
return NewLondonSigner(config.ChainID)
}
if config.BerlinBlock != nil {
return NewEIP2930Signer(config.ChainID)
}
if config.EIP155Block != nil {
return NewEIP155Signer(config.ChainID)
}
}
return HomesteadSigner{}
}
// LatestSignerForChainID returns the 'most permissive' Signer available. Specifically,
// this enables support for EIP-155 replay protection and all implemented EIP-2718
// transaction types if chainID is non-nil.
//
// Use this in transaction-handling code where the current block number and fork
// configuration are unknown. If you have a ChainConfig, use LatestSigner instead.
// If you have a ChainConfig and know the current block number, use MakeSigner instead.
func LatestSignerForChainID(chainID *big.Int) Signer {
if chainID == nil {
return HomesteadSigner{}
}
return NewLondonSigner(chainID)
}
// SignTx signs the transaction using the given signer and private key.
func SignTx(tx *Transaction, s Signer, prv *ecdsa.PrivateKey) (*Transaction, error) {
h := s.Hash(tx)
sig, err := crypto.Sign(h[:], prv)
if err != nil {
return nil, err
}
return tx.WithSignature(s, sig)
}
// SignNewTx creates a transaction and signs it.
func SignNewTx(prv *ecdsa.PrivateKey, s Signer, txdata TxData) (*Transaction, error) {
tx := NewTx(txdata)
h := s.Hash(tx)
sig, err := crypto.Sign(h[:], prv)
if err != nil {
return nil, err
}
return tx.WithSignature(s, sig)
}
// MustSignNewTx creates a transaction and signs it.
// This panics if the transaction cannot be signed.
func MustSignNewTx(prv *ecdsa.PrivateKey, s Signer, txdata TxData) *Transaction {
tx, err := SignNewTx(prv, s, txdata)
if err != nil {
panic(err)
}
return tx
}
// Sender returns the address derived from the signature (V, R, S) using secp256k1
// elliptic curve and an error if it failed deriving or upon an incorrect
// signature.
//
// Sender may cache the address, allowing it to be used regardless of
// signing method. The cache is invalidated if the cached signer does
// not match the signer used in the current call.
func Sender(signer Signer, tx *Transaction) (common.Address, error) {
if sc := tx.from.Load(); sc != nil {
sigCache := sc.(sigCache)
// If the signer used to derive from in a previous
// call is not the same as used current, invalidate
// the cache.
if sigCache.signer.Equal(signer) {
return sigCache.from, nil
}
}
addr, err := signer.Sender(tx)
if err != nil {
return common.Address{}, err
}
tx.from.Store(sigCache{signer: signer, from: addr})
return addr, nil
}
// Signer encapsulates transaction signature handling. The name of this type is slightly
// misleading because Signers don't actually sign, they're just for validating and
// processing of signatures.
//
// Note that this interface is not a stable API and may change at any time to accommodate
// new protocol rules.
type Signer interface {
// Sender returns the sender address of the transaction.
Sender(tx *Transaction) (common.Address, error)
// SignatureValues returns the raw R, S, V values corresponding to the
// given signature.
SignatureValues(tx *Transaction, sig []byte) (r, s, v *big.Int, err error)
ChainID() *big.Int
// Hash returns 'signature hash', i.e. the transaction hash that is signed by the
// private key. This hash does not uniquely identify the transaction.
Hash(tx *Transaction) common.Hash
// Equal returns true if the given signer is the same as the receiver.
Equal(Signer) bool
}
type londonSigner struct{ eip2930Signer }
// NewLondonSigner returns a signer that accepts
// - EIP-1559 dynamic fee transactions
// - EIP-2930 access list transactions,
// - EIP-155 replay protected transactions, and
// - legacy Homestead transactions.
func NewLondonSigner(chainId *big.Int) Signer {
return londonSigner{eip2930Signer{NewEIP155Signer(chainId)}}
}
func (s londonSigner) Sender(tx *Transaction) (common.Address, error) {
if tx.Type() != DynamicFeeTxType {
return s.eip2930Signer.Sender(tx)
}
V, R, S := tx.RawSignatureValues()
// DynamicFee txs are defined to use 0 and 1 as their recovery
// id, add 27 to become equivalent to unprotected Homestead signatures.
V = new(big.Int).Add(V, big.NewInt(27))
if tx.ChainId().Cmp(s.chainId) != 0 {
return common.Address{}, ErrInvalidChainId
}
return recoverPlain(s.Hash(tx), R, S, V, true)
}
func (s londonSigner) Equal(s2 Signer) bool {
x, ok := s2.(londonSigner)
return ok && x.chainId.Cmp(s.chainId) == 0
}
func (s londonSigner) SignatureValues(tx *Transaction, sig []byte) (R, S, V *big.Int, err error) {
txdata, ok := tx.inner.(*DynamicFeeTx)
if !ok {
return s.eip2930Signer.SignatureValues(tx, sig)
}
// Check that chain ID of tx matches the signer. We also accept ID zero here,
// because it indicates that the chain ID was not specified in the tx.
if txdata.ChainID.Sign() != 0 && txdata.ChainID.Cmp(s.chainId) != 0 {
return nil, nil, nil, ErrInvalidChainId
}
R, S, _ = decodeSignature(sig)
V = big.NewInt(int64(sig[64]))
return R, S, V, nil
}
// Hash returns the hash to be signed by the sender.
// It does not uniquely identify the transaction.
func (s londonSigner) Hash(tx *Transaction) common.Hash {
if tx.Type() != DynamicFeeTxType {
return s.eip2930Signer.Hash(tx)
}
return prefixedRlpHash(
tx.Type(),
[]interface{}{
s.chainId,
tx.Nonce(),
tx.GasTipCap(),
tx.GasFeeCap(),
tx.Gas(),
tx.To(),
tx.Value(),
tx.Data(),
tx.AccessList(),
})
}
type eip2930Signer struct{ EIP155Signer }
// NewEIP2930Signer returns a signer that accepts EIP-2930 access list transactions,
// EIP-155 replay protected transactions, and legacy Homestead transactions.
func NewEIP2930Signer(chainId *big.Int) Signer {
return eip2930Signer{NewEIP155Signer(chainId)}
}
func (s eip2930Signer) ChainID() *big.Int {
return s.chainId
}
func (s eip2930Signer) Equal(s2 Signer) bool {
x, ok := s2.(eip2930Signer)
return ok && x.chainId.Cmp(s.chainId) == 0
}
func (s eip2930Signer) Sender(tx *Transaction) (common.Address, error) {
V, R, S := tx.RawSignatureValues()
switch tx.Type() {
case LegacyTxType:
if !tx.Protected() {
return HomesteadSigner{}.Sender(tx)
}
V = new(big.Int).Sub(V, s.chainIdMul)
V.Sub(V, big8)
case AccessListTxType:
// AL txs are defined to use 0 and 1 as their recovery
// id, add 27 to become equivalent to unprotected Homestead signatures.
V = new(big.Int).Add(V, big.NewInt(27))
default:
return common.Address{}, ErrTxTypeNotSupported
}
if tx.ChainId().Cmp(s.chainId) != 0 {
return common.Address{}, ErrInvalidChainId
}
return recoverPlain(s.Hash(tx), R, S, V, true)
}
func (s eip2930Signer) SignatureValues(tx *Transaction, sig []byte) (R, S, V *big.Int, err error) {
switch txdata := tx.inner.(type) {
case *LegacyTx:
return s.EIP155Signer.SignatureValues(tx, sig)
case *AccessListTx:
// Check that chain ID of tx matches the signer. We also accept ID zero here,
// because it indicates that the chain ID was not specified in the tx.
if txdata.ChainID.Sign() != 0 && txdata.ChainID.Cmp(s.chainId) != 0 {
return nil, nil, nil, ErrInvalidChainId
}
R, S, _ = decodeSignature(sig)
V = big.NewInt(int64(sig[64]))
default:
return nil, nil, nil, ErrTxTypeNotSupported
}
return R, S, V, nil
}
// Hash returns the hash to be signed by the sender.
// It does not uniquely identify the transaction.
func (s eip2930Signer) Hash(tx *Transaction) common.Hash {
switch tx.Type() {
case LegacyTxType:
return rlpHash([]interface{}{
tx.Nonce(),
tx.GasPrice(),
tx.Gas(),
tx.To(),
tx.Value(),
tx.Data(),
s.chainId, uint(0), uint(0),
})
case AccessListTxType:
return prefixedRlpHash(
tx.Type(),
[]interface{}{
s.chainId,
tx.Nonce(),
tx.GasPrice(),
tx.Gas(),
tx.To(),
tx.Value(),
tx.Data(),
tx.AccessList(),
})
default:
// This _should_ not happen, but in case someone sends in a bad
// json struct via RPC, it's probably more prudent to return an
// empty hash instead of killing the node with a panic
//panic("Unsupported transaction type: %d", tx.typ)
return common.Hash{}
}
}
// EIP155Signer implements Signer using the EIP-155 rules. This accepts transactions which
// are replay-protected as well as unprotected homestead transactions.
type EIP155Signer struct {
chainId, chainIdMul *big.Int
}
func NewEIP155Signer(chainId *big.Int) EIP155Signer {
if chainId == nil {
chainId = new(big.Int)
}
return EIP155Signer{
chainId: chainId,
chainIdMul: new(big.Int).Mul(chainId, big.NewInt(2)),
}
}
func (s EIP155Signer) ChainID() *big.Int {
return s.chainId
}
func (s EIP155Signer) Equal(s2 Signer) bool {
eip155, ok := s2.(EIP155Signer)
return ok && eip155.chainId.Cmp(s.chainId) == 0
}
var big8 = big.NewInt(8)
func (s EIP155Signer) Sender(tx *Transaction) (common.Address, error) {
if tx.Type() != LegacyTxType {
return common.Address{}, ErrTxTypeNotSupported
}
if !tx.Protected() {
return HomesteadSigner{}.Sender(tx)
}
if tx.ChainId().Cmp(s.chainId) != 0 {
return common.Address{}, ErrInvalidChainId
}
V, R, S := tx.RawSignatureValues()
V = new(big.Int).Sub(V, s.chainIdMul)
V.Sub(V, big8)
return recoverPlain(s.Hash(tx), R, S, V, true)
}
// SignatureValues returns signature values. This signature
// needs to be in the [R || S || V] format where V is 0 or 1.
func (s EIP155Signer) SignatureValues(tx *Transaction, sig []byte) (R, S, V *big.Int, err error) {
if tx.Type() != LegacyTxType {
return nil, nil, nil, ErrTxTypeNotSupported
}
R, S, V = decodeSignature(sig)
if s.chainId.Sign() != 0 {
V = big.NewInt(int64(sig[64] + 35))
V.Add(V, s.chainIdMul)
}
return R, S, V, nil
}
// Hash returns the hash to be signed by the sender.
// It does not uniquely identify the transaction.
func (s EIP155Signer) Hash(tx *Transaction) common.Hash {
return rlpHash([]interface{}{
tx.Nonce(),
tx.GasPrice(),
tx.Gas(),
tx.To(),
tx.Value(),
tx.Data(),
s.chainId, uint(0), uint(0),
})
}
// HomesteadTransaction implements TransactionInterface using the
// homestead rules.
type HomesteadSigner struct{ FrontierSigner }
func (s HomesteadSigner) ChainID() *big.Int {
return nil
}
func (s HomesteadSigner) Equal(s2 Signer) bool {
_, ok := s2.(HomesteadSigner)
return ok
}
// SignatureValues returns signature values. This signature
// needs to be in the [R || S || V] format where V is 0 or 1.
func (hs HomesteadSigner) SignatureValues(tx *Transaction, sig []byte) (r, s, v *big.Int, err error) {
return hs.FrontierSigner.SignatureValues(tx, sig)
}
func (hs HomesteadSigner) Sender(tx *Transaction) (common.Address, error) {
if tx.Type() != LegacyTxType {
return common.Address{}, ErrTxTypeNotSupported
}
v, r, s := tx.RawSignatureValues()
return recoverPlain(hs.Hash(tx), r, s, v, true)
}
type FrontierSigner struct{}
func (s FrontierSigner) ChainID() *big.Int {
return nil
}
func (s FrontierSigner) Equal(s2 Signer) bool {
_, ok := s2.(FrontierSigner)
return ok
}
func (fs FrontierSigner) Sender(tx *Transaction) (common.Address, error) {
if tx.Type() != LegacyTxType {
return common.Address{}, ErrTxTypeNotSupported
}
v, r, s := tx.RawSignatureValues()
return recoverPlain(fs.Hash(tx), r, s, v, false)
}
// SignatureValues returns signature values. This signature
// needs to be in the [R || S || V] format where V is 0 or 1.
func (fs FrontierSigner) SignatureValues(tx *Transaction, sig []byte) (r, s, v *big.Int, err error) {
if tx.Type() != LegacyTxType {
return nil, nil, nil, ErrTxTypeNotSupported
}
r, s, v = decodeSignature(sig)
return r, s, v, nil
}
// Hash returns the hash to be signed by the sender.
// It does not uniquely identify the transaction.
func (fs FrontierSigner) Hash(tx *Transaction) common.Hash {
return rlpHash([]interface{}{
tx.Nonce(),
tx.GasPrice(),
tx.Gas(),
tx.To(),
tx.Value(),
tx.Data(),
})
}
func decodeSignature(sig []byte) (r, s, v *big.Int) {
if len(sig) != crypto.SignatureLength {
panic(fmt.Sprintf("wrong size for signature: got %d, want %d", len(sig), crypto.SignatureLength))
}
r = new(big.Int).SetBytes(sig[:32])
s = new(big.Int).SetBytes(sig[32:64])
v = new(big.Int).SetBytes([]byte{sig[64] + 27})
return r, s, v
}
func recoverPlain(sighash common.Hash, R, S, Vb *big.Int, homestead bool) (common.Address, error) {
if Vb.BitLen() > 8 {
return common.Address{}, ErrInvalidSig
}
V := byte(Vb.Uint64() - 27)
if !crypto.ValidateSignatureValues(V, R, S, homestead) {
return common.Address{}, ErrInvalidSig
}
// encode the signature in uncompressed format
r, s := R.Bytes(), S.Bytes()
sig := make([]byte, crypto.SignatureLength)
copy(sig[32-len(r):32], r)
copy(sig[64-len(s):64], s)
sig[64] = V
// recover the public key from the signature
pub, err := crypto.Ecrecover(sighash[:], sig)
if err != nil {
return common.Address{}, err
}
if len(pub) == 0 || pub[0] != 4 {
return common.Address{}, errors.New("invalid public key")
}
var addr common.Address
copy(addr[:], crypto.Keccak256(pub[1:])[12:])
return addr, nil
}
// deriveChainId derives the chain id from the given v parameter
func deriveChainId(v *big.Int) *big.Int {
if v.BitLen() <= 64 {
v := v.Uint64()
if v == 27 || v == 28 {
return new(big.Int)
}
return new(big.Int).SetUint64((v - 35) / 2)
}
v = new(big.Int).Sub(v, big.NewInt(35))
return v.Div(v, big.NewInt(2))
}
1
https://gitee.com/liu-zhao234568/cntest.git
git@gitee.com:liu-zhao234568/cntest.git
liu-zhao234568
cntest
cntest
v1.0.0

搜索帮助

53164aa7 5694891 3bd8fe86 5694891